太空水漂是什么
很多人都试过“打水漂”,找一片薄薄的石头或者瓦片,放低身姿,将石头或者瓦片斜贴着水面掷出,有意思的一幕便会出现:石头或者瓦片扎入水里后又会快速跃出,回到空中,再扎入水里,又回到空中……如此重复多次。
这次,嫦娥五号返回器就是在太空中打了“水漂”之后回来的。
这个“太空水漂”,航天术语叫“半弹道跳跃式返回”,即在返回器第一次进入大气层一定“深度”并滑行一定距离后,调整返回器姿态,使其再次升高,随着返回器的升高,其速度会进一步降底,在降到第一宇宙速度以下时返回器便不再满足成为一颗地球卫星的基本条件,再次开始下落,然后以类似神舟飞船的返回过程返回地球,后面的“回家”方式就轻车熟路了。
“为什么要采用这种‘打水漂’的形式回家呢?”中国航天科技集团五院总体设计部嫦娥五号探测器总体主任设计师孟占峰告诉记者,嫦娥五号返回器从月球归来的速度是高达每秒11.2公里的第二宇宙速度,而一般从近地轨道返回的航天器速度大多为每秒7.9公里的第一宇宙速度,可别小看了这每秒3公里多的差距,航天器如果以过高的速度进入大气层,摩擦产生的剧烈高温将带来极大风险,因此必须解决“减速”问题。
中国航天的轨道设计师们,决定借助地球大气层这个航天器再入返回的天然屏障,让返回器在太空中潇洒地打个“水漂”。
“返回器先是高速进入大气层,再借助大气层提供的升力跃出大气层,然后再以第一宇宙速度扎入大气层,返回地面,整个过程环环相扣,在15分钟内完成。”孟占峰说。
嫦娥五号能否成功打出一个漂亮的“水漂”,关键在于气动技术研究工作的全面性和正确性。
五院总体部设计师李齐在接受科技日报的采访时介绍,相比近地轨道航天器返回,嫦娥五号面临的气动问题更加复杂,再入热环境条件更为严酷,对气动数据的精准度要求更为苛刻。
首先,高速再入会导致复杂流动效应影响增大,各种复杂流动效应将对返回器气动力、热特性产生巨大影响。
其次,由于跳跃式再入,烧蚀、燃料消耗等各种因素,使得二次再入地球大气的外形适应不确定性增加。
第三,由于轻小型化要求,嫦娥五号返回器尺寸比国内外任何一种半弹道式再入飞行器都要小很多。尺寸的减小、质量的降低,可能导致返回器飞行稳定性下降,对气动特性预估准确度等方面提出了更高要求。
此外,相比返回式卫星和神舟飞船返回舱,本次任务中返回器面临的热环境要恶劣得多。由于高温效应,必须要考虑高温辐射加热影响,而这是近地轨道航天器分析再入热环境时不需要考虑的。
面对重重考验,五院总体部气动团队开展关键技术攻关,从国内外同类返回飞行器的气动研究成果中汲取经验,同时积极向院内外系统专家请教,终于准确把握了返回器气动研究工作难点和关键点,制定了全面详细的气动研究大纲。
要想突破半弹道跳跃式高速再入返回技术,气动设计、分析与验证必须解决外形、质心和数据三大需求。气动团队携手多个国内专业气动单位,开展了30余项研究工作,计算/试验状态超过20000个,逐步确定了返回器气动外形、配平质心盒、气动标称数据库及其偏差范围,为相关分系统设计、仿真和试验提供了可靠的数据输入。
最终,他们完成了相关研究,提出了适用于轻小型跳跃式高速再入返回器的气动外形设计方法、基于时变估计偏差的配平质心盒设计方法,以及适用于高速再入返回器的气动力偏差计算方法,完成了适用于第二宇宙速度再入的高空跨流域气动特性计算方法研究等;同时突破了多项关键技术,填补了多项国内空白,并在探月三期再入返回飞行试验器任务中得到了有效验证,为嫦娥五号任务圆满成功立下了汗马功劳。
这短短900秒的旅行,凝结了设计师们无数的心血,一次次分析、一次次计算、一次次论证、一次次试验……绞尽了脑汁,费尽了心思,最终成就了太空中精彩一跃,为探测器安全顺利返回打牢了基础。