初一数学知识点

时间:2011-02-03 07:40:38
染雾
分享
WORD下载 PDF下载 投诉

初一数学人教版知识点大全

  上学期间,大家最不陌生的就是知识点吧!知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。掌握知识点是我们提高成绩的关键!以下是小编为大家整理的初一数学人教版知识点,欢迎大家分享。

  初一数学知识点 篇1

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2.三角形的分类

  3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7.高线、中线、角平分线的意义和做法

  8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9.三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余;

  推论2三角形的一个外角等于和它不相邻的两个内角和;

  推论3三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的内角和是外角和的一半。

  10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11.三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

  14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  19.公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  20.多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  21.多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

  (2)n边形共有n(n-3)/2条对角线。

  初一数学知识点 篇2

  正数和负数

  ⒈、正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数

  注意:

  ①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2、具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

  零上8℃表示为:+8℃;零下8℃表示为:—8℃

  3、0表示的意义

  (1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

  (2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

  (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

  有理数

  1、有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

  (2)正分数和负分数统称为分数

  (3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数

  注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

  初一数学知识点 篇3

  1.同底数幂的乘法:am?an=am+n,底数不变,指数相加。

  2.同底数幂的除法:am÷an=am-n,底数不变,指数相减。

  3.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积。

  4.零指数与负指数公式:

  (1)a0=1(a≠0);a-n=,(a≠0)。注意:00,0-2无意义。

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

  (2)完全平方公式:

  ①(a+b)2=a2+2ab+b2,两个数和的平方,等于它们的平方和,加上它们的积的2倍;

  ②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;

  ※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc

  6.配方:

  (1)若二次三项式x2+px+q是完全平方式,则有关系式:;

  (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。

  (3)注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。

  7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

  多项式里,次数最高项的次数叫多项式的次数;

  注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

  10.合并同类项法则:系数相加,字母与字母的指数不变。

  11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  初一数学知识点 篇4

  1、大于0的数是正数。

  2、有理数分类:正有理数、0、负有理数。

  3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

  4、规定了原点,单位长度,正方向的直线称为数轴。

  5、数的大小比较:

  ①正数大于0,0大于负数,正数大于负数。

  ②两个负数比较,绝对值大的反而小。

  6、只有符号不同的两个数称互为相反数。

  7、若a+b=0,则a,b互为相反数

  8、表示数a的点到原点的距离称为数a的绝对值

  9、绝对值的三句:正数的绝对值是它本身,

  负数的绝对值是它的相反数,0的绝对值是0。

  10、有理数的计算:先算符号、再算数值。

  11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)

  12、乘除:同号得正,异号的负

  13、乘方:表示n个相同因数的乘积。

  14、负数的奇次幂是负数,负数的偶次幂是正数。

  15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

  16、科学计数法:用ax10n表示一个数。(其中a是整数数位只有一位的数)

  17、左边第一个非零的数字起,所有的数字都是有效数字。

  初一数学知识点 篇5

  初一数学重要知识点总结

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  初一数学重要知识点归纳

  整式的加减

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  3.多项式:几个单项式的和叫多项式.

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

  10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

  初一数学重要知识点整理

  ⒈绝对值的几何定义

  一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

  2.绝对值的代数定义

  ⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

  可用字母表示为:

  ①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

  如数轴所示,化简下列各数

  |a|,|b|,|c|,|a-b|,|a-c|,|b+c|

  解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

  所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

  3.绝对值的性质

  任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

  ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

  ⑶任何数的绝对值都不小于原数。即:|a|≥a;

  ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

  ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

  (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  经典考题

  已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

  解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

  所以|a+3|=0,|2b-2|=0,|c-1|=0

  即a=-3,b=1,c=1

  所以a+b+c=-3+1+1=-1

  初一数学知识点 篇6

  一、数学有理数知识点

  有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

  有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.

  二、整式的加减知识点

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  3.多项式:几个单项式的和叫多项式.

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

  三、初一学生必背数学重点

  1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

  4.平行线:在同一平面内,不相交的两条直线叫做平行线。

  5.同位角、内错角、同旁内角:

  同位角:1与5像这样具有相同位置关系的一对角叫做同位角。

  内错角:2与6像这样的一对角叫做内错角。

  同旁内角:2与5像这样的`一对角叫做同旁内角。

  初一数学知识点 篇7

  一、方程的有关概念

  1.方程:含有未知数的等式就叫做方程。

  2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

  

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

  二、等式的性质

  (1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么ac=bc

  (2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc

  三、移项法则:

  把等式一边的某项变号后移到另一边,叫做移项。

  四、去括号法则

  1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1.去分母(方程两边同乘各分母的最小公倍数)

  2.去括号(按去括号法则和分配律)

  3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4.合并(把方程化成ax=b(a0)形式)

  5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba)。

  六、用方程思想解决实际问题的一般步骤

  1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

  2.设:设未知数(可分直接设法,间接设法)。

  3.列:根据题意列方程。

  4.解:解出所列方程。

  5.检:检验所求的解是否符合题意。

  6.答:写出答案(有单位要注明答案)。

  七、有关常用应用类型题及各量之间的关系

  1、和、差、倍、分问题:

  (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

  (2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

  2、等积变形问题:

  “等积变形”是以形状改变而体积不变为前提。常用等量关系为:

  ①形状面积变了,周长没变;

  ②原料体积=成品体积。

  3、劳力调配问题:

  这类问题要搞清人数的变化,常见题型有:

  (1)既有调入又有调出。

  (2)只有调入没有调出,调入部分变化,其余不变。

  (3)只有调出没有调入,调出部分变化,其余不变。

  4、数字问题

  (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c

  (2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。

  5、工程问题:

  工程问题中的三个量及其关系为:工作总量=工作效率工作时间

  6、行程问题:

  (1)行程问题中的三个基本量及其关系:路程=速度时间。

  (2)基本类型有

  ①相遇问题;

  ②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

  7、商品销售问题

  有关关系式:

  商品利润=商品售价商品进价=商品标价折扣率商品进价

  商品利润率=商品利润/商品进价

  商品售价=商品标价折扣率

  8、储蓄问题

  (1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

  (2)利息=本金利率期数

  本息和=本金+利息

  利息税=利息税率(20%)

  今天的内容就介绍这里了。

  初一数学知识点 篇8

  相交线与平行线

  1.同一平面内,两直线不平行就相交。

  2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

  3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

  4.垂直三要素:垂直关系,垂直记号,垂足

  5.垂直公理:过一点有且只有一条直线与已知直线垂直。

  6.垂线段最短;

  7.点到直线的距离:直线外一点到这条直线的垂线段的长度。

  8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

  9.平行公理:过直线外一点有且只有一条直线与已知直线平行。

  10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题

  11.平行线的判定。

  结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。

  初一数学知识点 篇9

  1.数学代数初步知识点:

  代数式:用运算符号+-连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次,字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

  2.列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用乘,或省略不写;

  (2)数与数相乘,仍应使用乘,不用乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;

  (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

  3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

初一数学知识点

手机扫码分享

Top