听课记录应该根据听课的目的和要求,有所侧重地将听、看、记、思的内容有机灵活地结合起来。以下是小学数学教师听课记录范例,欢迎阅读。
小学数学教师听课记录范例1
教学过程:
一、导入
老师:我们去菜市场买东西用什么称呢?
学生:秤、电子秤
老师:那你见过这样的秤吗?出示天平
二、 介绍天平
它有两个托盘,中间有刻度,两天刻度相等,中间刻度为0.这就是天平。
三、 探究新知,观看课件
(一)等式
1、 在天平的两边放入砝码,左盘:20克和30克,右盘:50克,中间刻度指向0,那么说明天平平衡了。
提问:你能根据此列出一个式子吗?
学生:20+30=50
2、 观看课件,列式子。
30+x=80 x+20=70
2x=1003、 何为等式?学生一起说:表示相等的式子叫做等式。
举例:60+x=80 70+20=90 50-20=30
4、 总结:我们刚刚说的都是等式,先找等量关系,等式是表示相等关系的式子。
5、 举反例:5x>29 30<70是等式吗?
学生:不是。
6、 齐说两遍等式的概念。
(二)方程
1、 像30+x=80、x+20=70、2x=100这样的式子又叫什么呢?
学生:方程
老师:看来这位学生已经预习了本节内容,值得表扬。
2、 对,就是方程,像这样含有未知数的等式叫做方程。反复读。举方程的例子。
3、 等式和方程的关系。
所有的方程都是等式,所有的等式不一定都是方程。
(三)板书
20+30=50
表示相等关系的式子叫做等式
30+x=50
x+20=70
2x=100
含有未知数的等式
四、 练习
1、 判断哪些是方程,哪些是等式?为什么?
2、 看图列方程,并说一说表达的意思。
五、 总结:何为等式?方程?
表示相等关系的式子叫做等式。
含有未知数的等式叫做方程。
听课意见:
1、从生活中事物导入,来吸引学生们的眼球。
2、在课堂安排上具有逻辑性:等量关系——→等式——→方程
3、在板书上,注重用彩笔区分,清晰的描绘出了概念。
4、在课堂中照顾到了大部分学生,能做到一视同仁。
5、在强调重点时,采用多读、多念的方法,加深学生们的印象。
数学听课记录:从生活中事物导入,来吸引学生们的眼球。
小学数学教师听课记录范例2
(一)、创设情境,引入新课
1、复习:圆柱的体积公式是什么?
2、从日常生活中引出问题,激发学生求知欲望。
商店的冰箱里有两种香芋冰淇淋,圆柱形冰淇淋每支3元,圆锥形的冰淇淋每支0.8元,已知这两种冰淇淋的底面积相等,高也相等,你认为买哪一种冰淇淋比较合算?。
3.导入:那么,到底谁的意见正确呢?通过今天这节课学习圆锥的体积计算之后,相信这个问题就很容易解答了。这节课我们就来研究圆锥的体积。(板书:圆锥的体积)
(二)、动手测量,大胆猜想
1.我们已经认识了圆柱和圆锥的各部分的名称,下面请同学们以小组为单位,动手测量一下你们手中的圆柱和圆锥,看看能发现什么?(按四人小组动手测量)教师巡视学生测量方法是否正确,不对的给予指导。
2.量后交流发现,得出结论:每个组的圆柱和圆锥都是等底等高的。
3.大胆猜想:估计一下,这个圆锥的体积与这个圆柱的体积有怎样的关系?可能是这个圆柱体积的几分之几?(给学生充分猜想的时间和机会)
(三)、实验操作,推导圆锥体积计算公式
1.谈话:下面请大家利用你们手中的圆柱体和圆锥体来做实验,验证一下你们的猜想对不对 。(你们打算怎样做实验,先在小组内商量好办法)
2.学生分组做实验,师巡回指导。
3.交流汇报。
(1)你们小组是怎样做实验的?
(2)通过做实验,你发现了什么规律?圆锥体积与等底等高的圆柱体积之间有怎样的关系?
师相机板书:圆锥的体积是与它等底等高的圆柱体积的
4.提问:是不是所有的圆柱和圆锥都有这样的关系?
教师出示不等底等高的圆锥、圆柱,让两学生上台操作实验。
提问:通过这个实验,你得出什么结论?(只有等底等高的圆锥才是圆柱体积的 )
5.启发引导推导出圆锥体积公式并用字母表示。
提问:那么我们怎样计算圆锥的体积?
板书:圆锥的体积=等底等高的圆柱的体积×
=底面积×高×
用字母表示: = (先让学生试着写一写,然后师板书,学生进行对照)
6.提问:要求圆锥体积需要知道哪些条件?公式中的底面积乘高,求的是什么?为什么要乘 。
7. 练习(口答)
(1)一个圆柱体积是27立方分米,与它等底等高的圆锥体积是多少立方分米?
(2) 一个圆锥体积是150立方厘米,与它等底等高的圆柱体积是多少立方厘米?
(四)、运用公式,拓展训练
1.教学“试一试”。
学生独立计算,指名报答案,共同评议。
2.做“练一练”第1题。
(1)指定2人板演,其余学生做在练习本上。集体订正。
3.判断
(1)圆锥体积是圆柱体积的1/3。( )
(2)圆柱体积一定比圆锥体积大。( )
(3)圆锥的底面积是3平方厘米,高是2厘米,体积是2立方厘米。( )
4.做“练一练”第2题。
提问:① 谁能说一说做第2题的思路?
② 计算圆锥体积时要特别注意什么?
5.完成练习八第2题。
(1)学生尝试做题。交流解答方法。
(2)提问:这道题为什么用“12÷3”可以直接得到答案?
(3)做实验加深理解。
6.考考你
一根圆柱形木料,底面半径是6厘米,高12厘米。要削成一个最大的圆锥形,削去的木料体积是多少?
7.现在你能回答本课开始时那个问题了吗?
(五)、课堂总结
提问:这节课你学会了哪些知识?圆锥的体积怎样计算?为什么?这节课你还有什么收获与心得?
(六)、布置作业
完成练习八第1、3题。
[小学数学教师听课记录范例]