基本不等式及其应用
摘 要: 基本不等式在高中数学中具有极其重要的地位,从知识体系角度说,基本不等式不仅本身就是一个重要的数
学知识模块,而且能与高中数学多个分支知识进行融合;从思维能力角度说,基本不等式是创造性与严谨性的有机结合、发散性思维与收敛性思维的辩证统一.本文从基本不等式的三个限制条件――“一正,二定,三等”入手,结合典型例题,探究基本不等式的运用,让学生充分经历知识的形成过程,从而形成自己对重难点的突破策略,培养学生的归纳、总结能力. 关键词: 基本不等式 限制条件 最值 应用 一、主干知识 1.基本不等式:≤或a+b≥2. (1)基本不等式成立条件:a>0,b>0; (2)等号成立的条件:当且仅当a=b时取等号. 2.基本不等式的拓展:ab≤(),其中a,b∈R. 二、深入探究,加强理解 问题:设x>0,求函数y=x+的最小值. 解析:∵x>0“一正” ∴x+≥2=2“二定” 当且仅当x=,即x=1时,等号成立.“三等” 故函数y=x+的最小值为2. 点评:在应用基本不等式时,要把握三个限制条件,即“一正――各项都是正数;二定――和或积为定值;三相等――等号能取得”,这三个条件缺一不可. 探究1:设x<0,求函数y=x+的最大值. 解析:∵x<0,∴-x>0, ∴x+=-(-x+)≤-2=-2, 当且仅当-x=,即x=-1时,等号成立. 故函数y=x+的最大值为-2. 变式:设x≠0,求函数y=x+的值域. 解析:∵x≠0,∴|x|>0, ∴|x+|=|x|+≥2=2, 当且仅当|x|=,即x=±1时,等号成立. ∴|y|≥2,∴y≤-2或y≥2,即函数y=x+的值域为(-∞,-2]∪[2,+∞). 另解:用分类讨论的方法(x≠0,分x>0和x<0两种情况). 点评:培养学生等价转化的思想,如何创造条件满足“一正――各项都是正数”. 探究2:设a>1,求a+的'最小值. 解析:∵a>1,∴a-1>0, ∴a+=a-1++1≥2+1=3, 当且仅当a-1=,即a=2时,等号成立. 故a+的最小值为3. 变式:设0<a<1,求的最大值. 解析:∵0<a<1,∴1-a>0, ∴=?≤?=, 当且仅当a=1-a,即a=时,等号成立. 故的最大值为. 点评:运用基本不等式求最值的焦点在于凑配“和”与“积”,即满足“二定――和或积为定值”,并且在凑配过程中就应考虑到等号成立的条件. 探究3:设t≥2,求t+的最小值. 分析:本题不满足限制条件:“三相等――等号能取得”,故不能用基本不等式. 解:由双钩函数y=t+的图像及性质,易知函数y在[2,+∞)上是增函数, 当t=2时,t+的最小值为2. 变式:已知x>0,y>0,且x+y=1,求+的最小值. 错解:由已知,1=x+y≥2?圯≤?圯≥2 ∴+≥2=≥8 ∴+的最小值8. 错因:多次用到基本不等式,能否取等号,当且仅当x=y,=,又x+y=1,但x,y无解. 正解:∵x>0,y>0, ∴+=(+)(x+y)=7++≥7+2=7+4 当且仅当=又x+y=1,即x=2-3,y=4-2时,等号成立. 故+的最小值为7+4. 知识迁移:已知0<x<1,求+的最小值. 解析:∵0<x<1,∴1-x>0, ∴+=(+)?(x+1-x)=7++≥7+4, 当且仅当=,即x=2-3时,等号成立. 故+的最小值为7+4. 点评:运用基本不等式求最值时,应考虑到等号成立的条件.有些题目在拼凑过程中,注意通过“1”变换或添项进行拼凑,使分母能约去或分子能降次. 三、高考回放 A组 1.(2009年湖南高考10)若x>0,则x+的最小值为?摇 ?摇. 2.(2010年重庆高考12) 已知t>0,则函数y=的最小值为?摇 ?摇. 3.(2011年重庆高考7)若函数f(x)=x+(x>2)在x=a处取最小值,则a=( ) A.1+ B.1+ C.3 D.4 A组命题意图:主要考查灵活应用基本不等式求最值的知识,解决此类问题时,一定要注意“一正二定三等”,三者缺一不可. B组 1.(2009年重庆高考7)已知a>0,b>0,则++2的最小值是( ) A.2 B.2 C.4 D.5 2.(2010年四川高考11)设a>b>0,则a++的最小值是( ) A.1 B.2 C.3 D.4 3.(2011年天津高考12)已知loga+logb≥1,则3+9的最小值为___________. B组命题意图:主要考查应用基本不等式探求最值问题,解答过程中经过几次的放缩才能达到目的,充分体现了试题思维的层次性. C组 1.(2009年天津高考9)设x,y∈R,a>1,b>1,若a=b=3,a+b=2,则+的最大值为( ) A.2 B. C.1 D. 2.(2010年山东高考14)已知x,y∈R,且满足+=1,则xy的最大值为___________. 3.(2011年浙江高考16)若实数x、y满足x+y+xy=1,则x+y的最大值是___________. C组命题意图:主要考查基本不等式的推广ab≤()(a,b∈R)在求最值中的应用. 从近几年的高考试题来看,利用基本不等式求函数的最值、证明不等式、解决实际问题是高考的热点,题型既有选择题、填空题,又有解答题,难度为中低档题;客观题突出“小而巧”,主要考查基本不等式取等号的条件及运算能力;主观题考查较为全面,在考查基本运算能力的同时,又注重考查学生的逻辑推理能力及等价转化、分类讨论等思想方法.预测2012年高考仍将以求函数的最值为主要考点,重点考查学生的运算能力和逻辑推理能力. 参考文献: [1]孙翔峰主编.三维设计高考总复习新课标.光明日报出版社,2011.4. [2]杜志建主编.2007―2011新高考5年真题汇编.新疆青少年出版社.本文为全文原貌 未安装PDF浏览器用户请先下载安
基本不等式及其应用 装 原版全文