除法的估算
课题一:除法的估算
教学内容:教科书第16页例2及“做一做”,练习三第3、4题。
教学目标:1.使学生体会学习除法估算的必要,了解除数是一位数除法估算的一般方法。
2.引导学生根据具体情境合理进行估算,知道什么时候要估大些、什么时候要估小些,培养学生良好的思维品质和应用数学的能力。
教学过程:
一、理解学习除法估算的必要
1. 看图出示以下情境和问题:
①课本例2:李叔叔他们三人平均每人大约运多少箱?
②从学校到仙女湖有223千米,客车行驶了4小时,平均每小时约行多少千米?
③每听饮料3元,100元最多能买多少听饮料?④在一次地震中,有灾民182人,如果按每4人发一顶帐篷,最少要准备多少顶帐篷?
2.请学生尝试列出解答上面各题的算式。
一般来说,学生都能根据除法的含义列出下列4个算式:124÷3≈、223÷4≈、100÷3≈182÷4≈。
3.体会除法估算是解答问题的一种工具。
请学生逐一说出上面四道算式的意思,让学生在说算式意思的过程中,体会生活中许多问题的解答要用除法估算来完成,理解除法估算是解决问题的重要工具。
二、怎样进行除法估算
1.一般方法
(1)从上面4个算式中抽出:124÷3≈,请学生尝试估算。
(2)展示、交流学生估算的过程和方法。
生1:124≈120 生2:124=120+4
120÷3=40(或3×40=120) 120÷3=40
每人大约运40箱。 剩下的4箱中每人还
可运1箱,每人大约
运41箱。
引导学生对以上两种估算的过程和方法进行比较:
①两种估算的过程和方法都是正确的。
②两种结果虽然有微小的差异,但都接近准确值,不影响对问题的合理解决,可以说,这样的差异在本题的解决中是可以忽略不计的。
(3)让学生独立估算223÷4≈。
学生估算的过程和方法与124÷3≈的估算过程方法会基本相同。有以下几种思路:
生1:223≈200 生2:223=200+23 生3:223≈240
200÷4=50 200÷4=50 240÷4=60
平均每小时 平均每小时 平均每小时
约行50千米。 约行55千米。 约行60千米。
以上3种结果都对,说明汽车的速度每小时在50~60之间,当然以55最佳,因为它更接近准确值。
(4)归纳除数是一位数除法估算的一般方法。
通过以上两例、引导学生归纳:除数是一位数的除法估算,一般是把被除数看成整百(整十)或几百几十(几千几百)的数,除数不变,用口算除法的基本方法进行计算。
2.面对具体情境进行估算
(1)再现问题:
①每听饮料3元,100元最多能买多少听饮料?
②在一次地震中,有灾民182人,如果按每4人发一顶帐篷,最少要准备多少顶帐篷?
(2)组织讨论:
组织学生讨论以下两个问题:
a.在解决问题①中,能将100估成120吗?为什么?b.在解决问题②中,将182
成160合适还是估成200合适?
(3)交流看法:
请学生针对上述两个问题在班上进行思想的碰撞。通过研讨,让大多数人明白:在问题①中,只有100元钱,所以估算时不能将100估大,只能估小;在问题②中,已知灾民182人,在考虑所需帐篷数时,应将182看成200,这样才能保证有足够的帐篷让灾民渡
困难期。
(4)估算解答
请学生独立完成100÷3≈、182÷4≈的估算。学生作业后,点名说一说估算的过程结果。
三、巩固练习
1.完成课本第16页做一做第1、2题。面对第1题的具体情况,让学生思考:把260看成240或280都可以吗?为什么?
2.完成练习三第3、4题。面对脱离了具体背景的除法估算,请学生根据除法估算的一般方法正确求出估算结果。完成后,可请学生简单说一说是将被除数看成多少来计算的。
3.补充练习:160人去春游,每辆车坐28人,6辆车够吗?你会用不同的方法解答吗?
请学生用不同的方法解答,将乘、除法估算技能用于解答同一个问题之中,培养学
生灵活解题能力。
解法一:28≈30 解法二:160≈180
30×6=180 180÷6=30
160<180 180>160
6辆车够。
除法的估算