论文纳米合金的引言范文(经典6篇)

时间:2018-07-04 03:27:11
染雾
分享
WORD下载 PDF下载 投诉

论文纳米合金的引言范文 篇一

引言

随着科学技术的不断发展,纳米材料的研究逐渐成为材料科学领域的热点。纳米合金作为一种新型的纳米材料,具有独特的物理和化学性质,因此在能源、催化、电子学等领域具有广阔的应用前景。本论文旨在研究纳米合金的制备方法、结构特性以及其在催化领域中的应用。

一、纳米合金的制备方法

纳米合金的制备方法多种多样,常见的有物理法、化学法和生物法。物理法主要包括溅射、磁控溅射、球磨和激光熔融等;化学法主要包括溶胶-凝胶法、共沉淀法、微乳液法和电化学合成法等;生物法主要包括植物提取法和微生物合成法等。不同的制备方法可以得到具有不同结构特性的纳米合金,选择合适的制备方法对于研究纳米合金的性质至关重要。

二、纳米合金的结构特性

纳米合金的结构特性主要包括晶体结构、晶格畸变和表面形貌等。纳米合金的晶体结构可以是单相的、多相的或者具有非晶态结构,这取决于所选择的材料和制备方法。晶格畸变是指纳米合金中晶格的变形,这是由于合金成分的不同导致的。表面形貌是指纳米合金表面的形貌特征,包括粗糙度、孔隙度和晶粒尺寸等。纳米合金的结构特性对于其性质和应用具有重要影响。

三、纳米合金在催化领域中的应用

纳米合金在催化领域中具有广泛的应用。以贵金属合金为例,纳米合金可以提高催化剂的催化活性和选择性,降低催化剂的用量,从而提高催化反应的效率。此外,纳米合金可以通过调控合金成分和结构来实现对催化剂的性能的调控。因此,纳米合金在汽车尾气净化、化学合成和能源转化等领域中具有重要的应用价值。

综上所述,纳米合金作为一种新型的纳米材料,具有独特的物理和化学性质,因此在能源、催化、电子学等领域具有广阔的应用前景。通过研究纳米合金的制备方法、结构特性以及其在催化领域中的应用,可以为纳米合金的合成和应用提供有益的参考和指导。

论文纳米合金的引言范文 篇二

引言

纳米合金是由两种或多种金属元素组成的纳米材料,具有独特的物理和化学性质。近年来,纳米合金的研究成为材料科学领域的热点,其在能源、催化、生物医学等领域展现了广阔的应用前景。本论文旨在综述纳米合金的制备方法、结构特性以及其在生物医学领域中的应用。

一、纳米合金的制备方法

纳米合金的制备方法主要包括物理法、化学法和生物法。物理法主要包括溅射法、球磨法和激光熔融法等;化学法主要包括溶胶-凝胶法、共沉淀法和微乳液法等;生物法主要包括植物提取法和微生物合成法等。不同的制备方法可以得到具有不同结构特性的纳米合金,选择合适的制备方法对于研究纳米合金的性质和应用具有重要意义。

二、纳米合金的结构特性

纳米合金的结构特性包括晶体结构、晶格畸变和表面形貌等。纳米合金的晶体结构可以是单相的、多相的或者具有非晶态结构,这取决于所选择的金属元素和制备方法。晶格畸变是指纳米合金中晶格的变形,这是由于金属元素的不同尺寸和化学反应导致的。表面形貌是指纳米合金表面的形貌特征,包括粗糙度、孔隙度和晶粒尺寸等。纳米合金的结构特性对于其性质和应用具有重要影响。

三、纳米合金在生物医学领域中的应用

纳米合金在生物医学领域中具有广泛的应用。例如,纳米合金可以用作生物传感器、药物载体和磁共振成像剂等。纳米合金的小尺寸和大比表面积使其具有优异的生物相容性和药物释放性能。此外,纳米合金还可以通过调控合金成分和结构来实现对生物医学应用的优化。因此,纳米合金在生物医学领域中具有巨大的应用潜力。

综上所述,纳米合金作为一种新型的纳米材料,具有独特的物理和化学性质,因此在能源、催化和生物医学领域具有广阔的应用前景。通过研究纳米合金的制备方法、结构特性以及其在生物医学领域中的应用,可以为纳米合金的合成和应用提供有益的参考和指导。

论文纳米合金的引言范文 篇三

1纳米技术及纳米材料实际应用于大气污染治理

随着我国社会经济发展的脚步逐渐加快,工业生产与各个领域的实际生产过程中所造成的大气污染也越来越严重。据有关部门统计,近年来,我国空气中的NOX、CO、SO2都处于严重超标的状态,对我国社会发展造成了巨大的影响,严重危害着人们的身体健康,对我国环境也造成了巨大的危害。随着纳米技术与纳米材料的不断完善与创新,这一先进技术在我国各个领域的实际应用过程中为我国带来了全新的发展前景与企业运营理念,帮助我国多个领域实现了生产技术与产品质量的革新,对我国起到了极大地经济促进作用。针对我国日益严重的大气污染问题,在环境污染治理的过程中,通过对纳米技术与纳米材料的有效利用,可以有效改善我国大气污染的现状,为我国环境治理提供全新的途径。在纳米技术与纳米材料实际应用于大气污染治理的过程中,可分为空气净化及噪声、电磁辐射的控制。空气净化又分为脱硫催化剂净化、汽车尾气净化及室内空气净化三个部分,其中脱硫催化剂是我国工业生产中的一种燃料催化剂,可以在燃料燃烧的过程中极大降低污染物的排放,是我国纳米技术的衍生物。经有关部门检测,在车辆、飞机等主机正常运作时,所产生的噪声极易对人体造成干扰与危害,严重影响人们的生活质量与身体健康。同时,有关频电磁场在实际运转的过程中,与强烈辐射区域具有同等效果,都会对人体健康造成严重的影响。因此针对这些问题利用纳米材料与纳米技术进行治理的过程中,可以通过开发纳米润滑剂对机器设备进行充分润滑,有效改善设备运转时的噪声污染,并且在TiO2的表面添加含有纳米材料的静电屏蔽装置,有效降低设备运转过程中的电磁辐射,为人们的工作与健康提供有效保障。

2纳米技术及纳米材料实际应用于水污染治理

水资源污染是我国社会发展过程中突出的环境污染问题,对我国经济发展造成了严重的影响。针对我国传统的水处理方法,采用纳米技术与纳米材料进行水污染治理可以有效改善我国水处理效率较低的情况,对我国纳米技术的发展与环境污染的治理起到了促进作用。无机污染废水是我国主要的水污染问题之一,这些污染物对人体具有极大的危害性,严重者会导致人体患上肝癌与局部肿瘤,属于重点防治问题。针对水中的重金属与无机离子,常规的治理方式往往无法保证污染处理的质量,对我国水污染治理造成一定的影响。在纳米技术实际应用的过程中,可以通过光催化技术及氧化技术,将水中的金属离子及无机离子进行有效的转化与清除,实现无机污水治理的效用。全新的纳米技术更可以将污水中的贵重金属完全提炼出来,达到变废为宝的作用,对我国环境污染与经济发展起到一定的促进作用。有机废水是我国污水治理过程中较为突出的问题,在应用纳米材料及纳米技术进行防治的过程中,可以利用纳米TiO2光催化技术对有机废水进行合理性的降解,使废水中的高浓度有机物得到净化,由于这一技术在实际应用过程中需要相应高频光系统来维持运作,因此,在利用纳米TiO2光催化技术进行有机污水处理的过程中,还可以使用大功率的苯灯电源,利用经济适用的太阳辐射电源来为纳米TiO2光催化技术提供高频光能,以此保证有机废水得到有效地降解与净化,改善我国有机废水污染问题。同时,还可以利用纳米TiO2对农药污染进行源头处治理,利用纳米TiO2的光催化活性对农药废水进行永久性降解,解决农药废水的污染问题。

3结束语

环境污染问题已经逐渐成为我国发展过程中突出的社会矛盾,在进行治理的过程中,应该更好利用先进技术与先机资源,这样才能为今后环境保护与环境问题治理提供可靠保障因素。

论文纳米合金的引言范文 篇四

1研究方法的提出及建立

纳米材料制备技术的发展为解决这个问题提供了可能。随着制备技术的提高,纳米材料的晶粒尺寸、制造成本不断降低,而致密度、晶粒尺寸均匀度不断提高。例如,采用脉冲电沉积技术制备纳米Ni和Ni基合金薄板,通过各种参数的控制可使晶粒尺寸接近10nm,且沉积层具有很窄的晶粒尺寸分布范围。采用纳米材料进行微塑性成形,即使零件特征尺寸降低到微米尺度,零件内部依然包含大量的晶粒,可以排除各向异性的影响,从而抑制甚至消除尺度效应,解决微成形技术工程化应用的瓶颈问题。同时,纳米材料具有优异的力学性能,可以提高零件的质量。采用纳米材料进行塑性微成形,又带来了新的问题。随着晶粒尺寸的显著降低,纳米材料的强度、硬度成倍增加,塑性变形能力却明显变差[18],如果采用常规微成形工艺进行成形,为保证成形精度,对模具材料性能的要求明显增加,模具昂贵,摩擦磨损严重,寿命短。这会严重阻碍微塑性成形的广泛应用。研究经验表明,比较好的解决方式是采用超塑成形技术进行微成形,例如,Saotome等人采用超塑微成形技术制造了微齿轮[7],张凯锋等人采用该技术制造了微槽和微柱[13]。在超塑状态下,材料的变形抗力可以降低几十甚至上百倍[19—21],变形抗力和摩擦力都明显降低,从而显著降低微成形工艺对模具性能的苛刻要求,提高工艺稳定性和成形精度。采用超塑微成形技术的条件是,成形的材料必须是超塑性材料,幸运的是,纳米材料通常具有超塑性。Mcfadden等人[22]发现1420铝合金和Ni3Al材料的晶粒减小到纳米尺度后,材料在较低的温度就可以获得良好的超塑性。在超塑状态下,应力明显降低,从而降低对微小尺寸成形模具的性能要求,使得大批量生产微小零件成为可能。随着微机电系统的发展,微型零件的需求量不断增加。微阵列是一种典型的微结构零件,在医疗、通讯、光学、化学等领域有广泛应用,如生物微针阵列、微生物芯片、光存储器、微化学反应芯片、微传感器等。微阵列的制造工艺包括光刻、离子蚀刻、同步X射线光刻塑模电铸等,但各种工艺间的生产成本、制造周期、产品质量及适用材料等方面有较大差别。如果采用超塑微成形技术制造微阵列,可以显著降低生产成本,提高生产效率和工艺稳定性。而且,采用超塑微成形技术还可以胀形出空心圆柱微阵列,在生物芯片、微化学反应芯片上会有重要应用。拟采用电沉积技术制备镍基纳米材料,系统研究其超塑性微成形机理,实现微阵列的批量制造,不仅能够解决微成形技术工程化应用的瓶颈问题,而且有助于深入理解微成形的科学理论。

2微成形研究现状

微成形的工艺可以分为体积微成形和薄板微成形两种。体积微成形的加工工艺主要有微压缩、微锻造、微铸造等;薄板微成形工艺主要有微拉深、微弯曲、微冲裁等。随着微成形技术的发展,工件尺寸越来越微小,而在加工过程中,会由于工件尺寸的变小,得到的实验结果与宏观理论恰恰相反,许多宏观上得到应用的理论,不能简单地缩放就应用在微成形上[23—24],对于微成形中的尺寸效应,需要得出全面的实验结论和微观可用的理论[25]。MichaelD.Uchic等人利用微压缩实验和模拟以位错为基础的变形过程进行了深入的研究[26],清楚地证明了尺寸的变化对于材料性能的影响,如晶粒的受力变形或产生应变梯度等,并也发现了小尺寸样品会产生应变突变,这对于理解位错自由组合消耗能量具有新的理解意义,并可以推动尺寸变形理论的产生。美国的Mara等人利用微压缩测试Cu/Nb纳米层状复合材料的机械力学性能,其微柱的压缩形变在相对于圆柱轴和压缩方向的45°方向被观察到,剪切带也是显而易见地被发现,且出现了比较大的塑性变形和相对于压缩轴的旋转[27]。H.Justinger等人利用8mm到1mm直径的冲头对不同的晶粒尺寸和箔材的厚度比的材料进行了微拉深试验,观察到冲头的力出现了明显的变化,同时改变粗糙度会显著影响杯型的几何形状[28]。建立了一个不同数量晶粒的单位体积的立方体基本模型,可以在下一个微成形过程中估计单一晶粒的可能取向,并解释了不同影响条件在微拉深中压缩和拉伸过程的流变应力变化的原因。日本的K.Manabe等人成功地利用微拉深工艺将20μm厚的铝箔制造成直径为500μm的微杯,并对杯子的几何形状、厚度应变分布以及表面粗糙度进行了测定[29]。研究表明,降低表面粗糙度更有益于微拉深的成形,表面粗糙度的增大不仅影响表面质量,还对成形极限产生影响,材料表面的光滑和拉深冲头的光滑,仍然是研究的重点方向。中国台湾学者Cho-PeiJiang和Chang-ChengChen,利用V型弯曲测试系统研究了板材的晶粒尺寸效应与弯曲板材厚度之间的关系,平均晶粒尺寸为25~370μm,板材厚度为100~1000μm,T/D为1~30,结果表明当平均晶粒尺寸恒定时,屈服强度和最大冲压力随着T/D的减小而降低,而随着T/D的增大,回弹量变小;当板材厚度一定时,平均晶粒尺寸变化的回弹现象类似于宏观尺寸的板材V型弯曲试验结果[30]。

3实验研究与讨论

3.1电沉积过程影响因素研究

3.1.1电流密度变化Ni-Co/GO复合材料电沉积过程中,不同电流密度(1.1,1.4,1.7,2.0,2.3,2.6A/dm2)的常温拉伸工程应力-应变曲线图如图1所示,总体的变化趋势是随着电流密度的增大,应变出现先增大后减小的状态,应力在1.1A/dm2时较小,为721MPa,在2.0A/dm2时达到最大,为1260MPa,其余的电流密度对应的应力大小较接近,在870~930MPa之间变化。不同电流密度的高温拉伸真实应力-应变曲线图如图2所示,图中右上角的曲线图为不同电流密度与延伸率的关系图。随着电流密度的增大,延伸率出现先增大后减小的情况,在电流密度为2.0A/dm2时产生的延伸率最大,达到535.8%。较高的电流密度可以得到较高的过电势,产生较大的成核速率,形成较多的晶核数,从而使得晶粒细化,因此随着电流密度的提高,复合材料的晶粒尺寸减小,能够有效地提高材料的常温和高温拉伸性能。当电流密度过高时,在一个脉冲周期的导通时间内会快速沉积,因为受到电镀液中扩散速率的影响,导致达到下一个脉冲周期时阴极表面的金属离子较少,对沉积速率及沉积得到的复合材料的性能产生较大的影响。

3.1.2pH值变化图3是镀液中不同pH值制备的复合材料常温拉伸的工程应力-应变曲线图,pH值依次为2,3,4,5.5。在工程应力-应变曲线图中可以看到,随着pH值的增加,应力、应变随之增加,在pH值为2时应力最小,为773MPa,当pH值为5.5时,应力达到1260MPa。当pH值较低时,虽然能够提高阴极电流密度的范围,增大了沉积速率,但会导致阴极析氢增加,从而导致内部和外部出现气孔,降低复合材料的力学性能。而过高的pH值会使镀层的脆性增加,也不利于力学性能的提高。

3.2单向拉伸试验研究

3.2.1应变速率变化研究图4为常温条件下应变速率变化的工程应力应变曲线图。当应变速率为1.68×10-2和1.68×10-3时,应力约为630MPa,应变约为0.41;当应变速率为1.68×10-4时,应力和应变都出现明显增加,应力可以达到1245MPa,应变约为0.69;而当应变速率为1.68×10-5时,应力出现非常明显的减小,降到937MPa,应变变化较小,约为0.67。出现这个现象主要是因为,复合材料中由于存在一些空隙和位错,当应变速率较大时,位错来不及滑移,其他晶粒也来不及补充到空隙位置,导致在位错或空隙位置出现断裂,从而得不到较好的力学性能;随着应变速率变小,晶粒可以填充空隙位置,位错也出现滑移等,有效地增加复合材料的应力应变等力学性能;而当应变速率继续减小,填充的量增加,滑移也比较明显,出现了应变增大但应力增加较小的现象。

3.2.2复合材料的厚度变化研究图5是复合材料不同厚度的常温拉伸工程应力应变曲线图。从图中可以看出,随着复合材料的厚度的增加,材料应变随之增大,这主要是因为复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会一直存在晶粒被拉应力的作用,不会因为空隙导致突然断裂,从而导致应变增大。当复合材料较薄时,应力会稍小一些,这主要是因为试样薄,位错和间隙存在的情况下,会出现某部位突然断裂,从而影响材料的应力,而当复合材料厚度增加后,会因为存在较多晶粒,从而增加材料的应力。

3.2.3试样宽度变化研究图6是不同宽度试样的常温拉伸工程应力应变曲线图。由图6可以看出,随着试样宽度的增加,应变也随之增加。当试样宽度增加时,复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会存在有效的拉应力作用在不同的晶粒上,导致应变增大;同时不同的试样宽度,拉应力基本相同,这是因为虽然试样的宽度不同,但是作用在每个晶粒上的力基本相同,拉应力变化不大。

3.3微半球体高温气体胀形图7是电沉积液中GO不同加入量时的高温气体胀形得到的微半球体,图7a—c的GO的添加量依次为0.01,0.03,0.05g/L。所得到的高温胀形件的高度依次为2.5,2.7,3.0mm,模具的孔半径为2.5mm,因此,H/r依次为1,1.08,1.2。这与高温拉伸的数据符合,都实现了高温超塑性。图8为胀形件厚度分布图。微半球自底端至顶端,厚度逐渐变薄。厚向应变不均匀,这主要是胀形件在不同位置应力状态差异造成的。胀形件的顶端为等轴应力状态,而靠近底端的部分,由于模具夹持作用,限制了板材沿圆周方向变形,因此这个位置的应力状态为平面应变状态。由于局部应力的差异导致不同位置具有不一样的应变速率,最后造成零件不同位置厚度的差别。在顶端区域由于有较大的应变速率,造成了显著的变薄效应。图9为胀形件胀破断口的SEM图。断口的晶粒粒径比较均匀,为1~2μm,在图9中发现存在GO,且存在GO的位置的晶粒较其他部分的晶粒稍小一些,说明GO的加入可以提高材料的热稳定性,抑制金属晶粒在高温下的长大,但加入量比较少,对材料晶粒长大的抑制作用较小。在胀破断口很难寻找到GO的存在,是因为在高温下,GO出现了挥发,且由于GO的厚度比较小,在产生挥发后很难在SEM下发现。

4结论

通过对最新进展进行分析研究,拟利用脉冲电沉积技术制备镍基纳米材料,系统研究其超塑性微成形机理,实现微阵列的批量制造,解决微成形技术工程化应用的瓶颈问题,同时有助于深入理解微成形的科学理论。通过实验研究发现,Ni-Co/GO复合材料电沉积过程中,当电流密度为2.0A/dm2时,制备得到的材料常温拉伸的应力达到最大值,为1260MPa,高温拉伸产生最大真实应变,延伸率达到535.8%;将电沉积液的pH值调节为5.5时,制备的复合材料的常温拉伸性能最好;进行了高温胀形实验,H/r比值最高可达到1.2,并可见微半球胀形件自底端至顶端的厚度逐渐变薄,厚度方向应变量达到68%。

论文纳米合金的引言范文 篇五

在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方某时400G的磁性纳米棒阵列的量子磁盘、成本低廉、发光频段可调的高效纳米阵列激光器、价格低廉高能量转化的纳米结构太阳能电池和热电转化元件、用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。

研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。

1研究形状和趋势

纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。

纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物FqsAJZCr室成果的转化,到目前为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。

根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(NSF)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国DARPA(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近匕年来制定了各种计划用于纳米科技的研究,例如Ogala计划、ERATO计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资1.28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资1.2亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统_亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从2.5亿美元增

加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。

2国际动态和发展战略

1999年7月8日《自然》(400卷)发布重要消息题为“美国政府计划加大投资支持纳米技术的兴起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从2.5亿美元增加到5亿美元。_总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原1.97亿美元的资助强度提高到2.5亿美元。《美国商业周刊》8月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功100urn芯片,美国明尼苏达大学和普林

斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-”bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。

最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。

面对这种挑战的形势,中国在这个领域的研究能不能继续保持第二阶梯的前列位置,能不能在下世纪前周年,在纳米材料和技术的市场中占有一定比例的份额,这是值得我们深思的重要问题。中国科学院在我国纳米材料研究占有极其重要的地位,在纳米粉体的合成、纳米金属和纳米陶瓷体材料的制备、纳米碳管定向生长和超长纳米碳管的合成、纳米同轴电缆的制备和合成、有序阵列纳米体系的设计和合成、新合成方法的创新等在国内外都做了有影响的工作。在《自然》上发表论文1篇,《科学》上发表论文4篇,影响因子在3以上的论文6篇,申请发明专利28项,已获发明专利7项,有5项专利获得实施,扶植了国内一些纳米产业,这些都为进一步工作奠定了基础。

为了使中国科学院在世纪之交乃至下一世纪在纳米材料和技术研究在国际上占有一席之地,在国际市场上占有一份额,从前瞻性、战略性、基础性来考虑应该成立中国科学院纳米材料和技术研究中心,建议北方成立一个以物质科学中心为基础的研究中心(包括金属研究所),在南方建立一个以合肥地区中国科学院固体物理所和中国科技大学为基础的研究中心,主要任务是以基础研究为主,做好基础研究与应用研究的衔接和成果的转化。

在富有挑战的对世纪,世界各国都对富有战略意义的纳米科技领域予以足够的重视,特别是发达国家都从战略的高度部署纳米材料和纳米科技的研究,目的是提高在未来10年乃至20年在国际中的竞争地位。从各国对纳米材料和纳米科技的部署来看,发展纳米材料和纳米科技的战略是:()以未来的经济振兴和国家实力的需求为目标,牵引纳米材料的基础研究、应用开发研究;(2)组织多学科的科技人员交叉创新,做到基础研究、应用研究并举,纳米科学、纳米技术并举,重视基础研究和应用研究的衔接,重视技术集成;(3)重视发展纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米材料和纳米技术在环境、能源和信息等重要领域的应用,实现跨越式的发展。

3国内研究进展

我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介人,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。

目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学烹北大学、西安交通大学、天津大学。青岛化工学院、华东师范大学\华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学

研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属Gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常Hall-Petch效应。

近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到3mmX3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是唯一维纳米丝和纳米电缆:应用溶胶一凝胶与碳热还原相结合的新方法,首次合成了碳化或(TaC)纳米丝外包覆绝缘体SIOZ和TaC纳米丝外包覆石墨的纳米电缆,以及以S江纳米丝为芯的纳米电缆,当前在国际上仅少数研究组能合成这种材料。该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(CrN)、磷化钻(COZP)和硫化锑(Sb。S。)纳米微晶,论文发表在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,论文发表在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金棗从四氯化碳(CC14)制成金刚石”~文,予以高度评价。

我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才作出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。

在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导CVD、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、MCM-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。

论文纳米合金的引言范文 篇六

1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~nm)。从此以后,不断有文献报道用微乳液合成各种纳米粒子。本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。

1微乳反应器原理

在微乳体系中,用来制备纳米粒子的一般是W/O型体系,该体系一般由有机溶剂、水溶液。活性剂、助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般有AOT[2一乙基己基]磺基琥珀酸钠]。AOS、SDS(十二烷基硫酸钠)、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。

W/O型微乳液中的水核中可以看作微型反应器(Microreactor)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接关系,若令W=[H2O/[表面活性剂],则由微乳法制备的纳米粒子的尺寸将会受到W的影响。利用微胶束反应器制备纳米粒子时,粒子形成一般有三种情况(可见图1、2、3所示)。

(l)将2个分别增溶有反应物A、B的微乳液混合,此时由于胶团颗粒间的碰撞,发生了水核内物质的相互交换或物质传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的晶核或粒子之间的物质交换不能实现,所以水核内粒子尺寸得到了控制,例如由硝酸银和氯化钠反应制备氯化钠纳粒。

(2)一种反应物在增溶的水核内,另一种以水溶液形式(例如水含肼和硼氢化钠水溶液)与前者混合。水相内反应物穿过微乳液界面膜进入水核内与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。例如,铁,镍,锌纳米粒子的制备就是采用此种体系。

(3)一种反应物在增溶的水核内,另一种为气体(如O2、NH3,CO2),将气体通入液相中,充分混合使两者发生反应而制备纳米颗粒,例如,Matson等用超临界流体一反胶团方法在AOT一丙烷一H2O体系中制备用Al(OH)3胶体粒子时,采用快速注入干燥氨气方法得到球形均分散的超细Al(OH)3粒子,在实际应用当中,可根据反应特点选用相应的模式。

2微乳反应器的形成及结构

和普通乳状液相比,尽管在分散类型方面微乳液和普通乳状液有相似之处,即有O/W型和W/O型,其中W/O型可以作为纳米粒子制备的反应器。但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴粒度可控,实验装置简单且操作容易,所以微乳反应器作为一种新的超细颗粒的制备方法得到更多的研究和应用。

2.1微乳液的形成机理

Schulman和Prince等提出瞬时负界面张力形成机理。该机理认为:油/水界面张力在表面活性剂存在下将大大降低,一般为l~10mN/m,但这只能形成普通乳状液。要想形成微乳液必须加入助表面活性剂,由于产生混合吸附,油/水界面张力迅速降低达10-3~10-5mN/m,甚至瞬时负界面张力Y<0。但是负界面张力是不存在的,所以体系将自发扩张界面,表面活性剂和助表面活性剂吸附在油/水界面上,直至界面张力恢复为零或微小的正值,这种瞬时产生的负界面张力使体系形成了微乳液。若是发生微乳液滴的聚结,那么总的界面面积将会缩小,复又产生瞬时界面张力,从而对抗微乳液滴的聚结。对于多组分来讲,体系的Gibbs公式可表示为:

--dγ=∑Гidui=∑ГiRTdlnCi

(式中γ为油/水界面张力,Гi为i组分在界面的吸附量,ui为I组分的化学位,Ci为i组分在体相中的浓度)

上式表明,如果向体系中加入一种能吸附于界面的组分(Г>0),一般中等碳链的醇具有这一性质,那么体系中液滴的表面张力进一步下降,甚至出现负界面张力现象,从而得到稳定的微乳液。不过在实际应用中,对一些双链离子型表面活性剂如AOT和非离子表面活性剂则例外,它们在无需加入助表面活性剂的情况下也能形成稳定的微乳体系,这和它们的特殊结构有关。

2.2微乳液的结构

RObbins,MitChell和Ninham从双亲物聚集体的分子的几何排列角度考虑,提出了界面膜中排列的几何排列理论模型,成功地解释了界面膜的优先弯曲和微乳液的结构问题。

目前,有关微乳体系结构和性质的研究方法获得了较大的发展,较早采用的有光散射、双折射、电导法、沉降法、离心沉降和粘度测量法等;较新的有小角中子散射和X射线散射、电子显微镜法。正电子湮灭、静态和动态荧光探针法、NMR、ESR(电子自旅共振)、超声吸附和电子双折射等。

3微乳反应器的应用――纳米颗粒材料的制备

3.1纳米催化材料的制备

利用W/O型微乳体系可以制备多相反应催化剂,Kishida。等报道了用该方法制备

Rh/SiO2和Rh/ZrO2载体催化剂的新方法。采用NP-5/环已烷/氯化铑微乳体系,非离子表面活性剂NP-5的浓度为,氯化铑在溶液中浓度为0.37mol/L,水相体积分数为0.11。25℃时向体系中加入还原剂水含肼并加入稀氨水,然后加入正丁基醇锆的环乙烷溶液,强烈搅拌加热到40℃而生成淡黄色沉淀,离心分离和乙醇洗涤,80℃干燥并在500℃的灼烧3h,450℃下用氧气还原2h,催化剂命名为“ME”。通过性能检测,该催化剂活性远比采用浸渍法制得的高。

3.2无机化合物纳粒的制备

利用W/O型微乳体系也可以制备无机化合物,卤化银在照像底片乳胶中应用非常重要,尤其是纳米级卤化银粒子。用水一AOT一烷烃微乳体系合成了AgCl和AgBr纳米粒子,AOT浓度为0.15mol/L,第一个微乳体系中硝酸银为0.4mol/L,第二个微乳体系中NaCl或NaBr为0.4mol/L,混合两微乳液并搅拌,反应生成AgCl或AgBr纳米颗粒。

又以制备CaCO3为例,微乳体系中含Ca(OH)2,向体系中通入CO2气体,CO2溶入微乳液并扩散,胶束中发生反应生成CaCO3颗粒,产物粒径为80~100nm。

3.3聚合物纳粒的制备

利用W/O型微乳体系可以制备有机聚丙烯酸胺纳粒。在20mlAOTt――正己烷溶液中加入0.1mlN-N一亚甲基双丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入过硫酸铵作为引发剂,在氮气保护下聚合,所得产物单分散性较好。

3.4金属单质和合金的制备

利用W/O型微乳体系可以制备金属单质和合金,例如在AOT-H2O-n―heptane体系中,一种反相微胶束中含有0.lmol/LNiCl2,另一反相微胶束中含有,混合搅拌,产物经分离、干燥并在300℃惰性气体保护下结晶可得镍纳米颗粒。在某微乳体系中含有0.0564mol/L,FeC12和0.2mol/LNiCl2,另一体系中含有0.513mol/LNaBH4溶液,混合两微乳体系进行反应,产物经庚烷、丙酮洗涤,可以得到Fe-Ni合金微粒(r=30nm)。

3.5磁性氧化物颗粒的制备

利用W/O型微乳体系可以制备氧化物纳米粒子,例如在AOT-H2O-n-heptane体系中,一种乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一体系中含有NH4OH,混合两种微乳液充分反应,产物经离心,用庚烷、丙酮洗涤并干燥,可以得到Fe3O4纳粒(r=4nm)。

3.6高温超导体的制备

利用W/O型微乳体系可以合成超导体,例如在水一CTAB一正丁醇一辛烷微乳体系中,一个含有机钇、钡和铜的硝酸盐的水溶液,三者之比为1:2:3;另一个含有草酸铵溶液作为水相,混合两微乳液,产物经分离,洗涤,干燥并在820℃灼烧2h,可以得到Y-Ba-Cu―O超导体,该超导体的Tc为93K。另外在阴离子表面活性剂IgegalCO-430微乳体系中,混合Bi、Pb、Sr、Ca和Cu的盐及草酸盐溶液,最终可以制得Bi-Pb-Sr-Ca-Cu―O超导体,经DC磁化率测定,可知超导转化温度为Tc=112K,和其它方法制备的超导体相比,它们显示了更为优越的性能。

目前对纳米颗粒材料的研究方法比较多,较直接的方法有电镜观测(SEM、TEM、STEM、STM等);间接的方法有电子、X一射线衍射法(XRD),中子衍射,光谱方法有EXAFS,NEXAFS,SEX-AFS,ESR,NMR,红外光谱,拉曼光谱,紫外一可见分光光度法(UV-VIS),荧光光谱及正电子湮没,动态激光光散射(DLS)等。

4结语

微乳反应器作为一种新的制备纳米材料的方法,具有实验装置简单,操作方便,应用领域广,并且有可能控制微粒的粒度等优点。目前该方法逐渐引起人们的重视和极大兴趣,有关微乳体系的研究日益增多,但研究还是初步的,如微乳反应器内的反应原理、反应动力学、热力学及化学工程问题都有待解决。但是我们相信,微乳化技术作为一种新的制备纳米材料的技术,必将成为该领域不可替代的一部分。

论文纳米合金的引言范文(经典6篇)

手机扫码分享

Top