文章1:数学家的名人故事 篇一
在数学史上,有许多杰出的数学家留下了让人敬仰的故事。其中,有一位著名的数学家,他的名字是欧拉。欧拉被誉为数学界的“天才中的天才”,他的数学成就被后人称为“欧拉的遗产”。
欧拉出生在瑞士的一个小镇上,从小就展现出了非凡的数学天赋。在他年轻的时候,他曾在柏林大学学习数学,并在那里结识了许多知名的数学家。后来,欧拉开始在圣彼得堡科学院任教,这也是他一生中最辉煌的时期。
欧拉的成就之一是他在数学分析领域的突出贡献。他发展了微积分学,并创建了欧拉方程、欧拉定理等重要的数学概念。他的工作不仅在当时引起了轰动,而且对后来的数学研究产生了深远的影响。
除了在数学领域的杰出成就外,欧拉还以其勤奋和敬业而闻名。据说,他每天都会花几个小时在数学研究上,即使年事已高,他依然如此。欧拉的这种敬业精神激励了许多后来的数学家,成为他们学习的楷模。
总的来说,欧拉是一位杰出的数学家,他的名人故事令人感到敬佩。他在数学领域的成就和敬业精神,为后人树立了榜样,也为数学研究的发展作出了不可磨灭的贡献。
文章2:数学家的名人故事 篇二
在数学史上,有一位备受尊敬的数学家,他的名字是高斯。高斯被公认为是数学史上的一个巨人,他的数学成就深深地影响了后世的数学研究。
高斯出生在德国的一个小镇上,从小就展现出了非凡的数学才华。他在年轻的时候就创作了一系列重要的数学定理和公式,其中包括高斯分布定理、高斯消元法等。这些成就使他在当时就名声大噪,成为众多数学家的楷模。
除了在数学领域的杰出成就外,高斯还以其谦逊和勤奋而著称。据说,他对待学术研究非常认真,每天都会花大量的时间在数学问题上。他的勤奋和谦逊的品质深深地感染了周围的人,成为后人学习的楷模。
高斯的名人故事激励了许多后来的数学家,他的成就也为数学研究的发展作出了巨大的贡献。他被誉为数学史上的一颗耀眼的明星,他的故事将永远激励着数学界的人们,继续探索数学的奥秘。
总的来说,高斯是一位杰出的数学家,他的名人故事令人感到钦佩。他在数学领域的成就和谦逊勤奋的品质,为后人树立了榜样,也为数学研究的发展作出了不可磨灭的贡献。
数学家的名人故事 篇三
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面是小编收集的数学家的名人故事(精选20篇),欢迎鉴赏。
数学家的名人故事 篇四
老数学家苏步青的养生经
蜚声国际数坛的老辈数学家苏步青教授,在百岁时还精神矍铄,思维清晰。
苏老九十岁高龄时,还着书立说,带研究生、每天工作约十小时左右,精力何等充沛!那么,当有人问他健康长寿之道,他总笑呵呵地回答说:“我不懂什么养生之道,只是平素生活有规律,并注意体育锻炼而已……”
苏老的生活习惯,大致是这样的:
清晨五点起床,晚上十一点睡觉,每晚睡眠六小时,白天午睡一小时。早晨起身后,先在门前院子里,做一遍健身操———练功十八法,约一刻钟;然后学习一小时,就进早膳。下午工作完毕,坚持步行二至三公里———雨天以上下楼梯替代。数十年如一日,天天如此。
苏步青是浙江平阳人,出身农家,由于家境清寒,从小少吃缺穿,少年时代的苏步青,又瘦又小,身体并不怎么健康。小学毕业后,读了二年中学,十七岁东渡日本,进帝国大学专攻数学。在异国他乡,苏步青一住十二年。在这期间,他逐渐爱上了体育,兴趣广泛,划船、溜冰、网球、骑自行车、开摩托车,样样都能漂亮地玩上几手。当时,苏步青还是帝国大学网球队和划船队的主力队员之一。
数十年来,由于坚持体育锻炼,苏步青身体素质极好。就是到了耄耋之年,上五、六层楼梯,依然不甚气喘,嘴里的牙齿,也与壮年时相仿。九十岁那年的夏秋之际,他还蛮轻松地登上安徽黄山,游览休养。一路足力之健,令人羡慕与钦佩。
人,总希望自己能健康长寿的。但是,如何才能达到此目的呢?苏老认为,除上述体育锻炼外,精神保健也是至关重要的。苏老性格开朗,说话幽默,不管是与人谈话还是作报告,常常可以听到他的笑声,他经常讲:“少积忧虑的人,才能健康长寿。”他还讲:为人在世,应该豁达大度,胸怀坦荡,凡事想得开,放得下。再者,人要多动,特别是上了年纪的人,要多找事情做。如果饱食终日,无所事事,或者一味贪图安逸、享受,对健康也绝无好处。一九八五年,苏步青退居二线,相对而言,时间比以前多了些。他马上觉察到,人闲着很容易懒散,精神空虚对身体健康不利,于是,便主动找事情做———连续办了三届中学教师(数学)培训班。
至于饮食,苏老的见解是,自己喜欢吃的,尽量少吃点,不喜欢吃的则要多吃点,荤素皆然。酒可以饮点,但绝不能过量。
苏老的夫人米子松本,是日本仙台市人,出身书香,精于茶道。所以,苏老有饮茶的习惯,他特别好饮上等绿茶。苏老讲:茶是我国人民最常用的饮料,对老年人来讲,饮茶利多弊少,既能生津止渴,利尿消食;还能去除油腻,使口内感到清新舒适。同时,茶还具有抗痢疾杆菌的功能。
苏老古稀之年以后,激烈运动是不做了,但上述的练功十八法,工作完毕后的漫步行走,九十五岁前依然坚持。每晚睡觉前半小时,或听听音乐、或读读唐诗、轻松之后,很快进入梦境。
数学家的名人故事 篇五
笛卡儿是法国数学家,哲学家,物理学家,生理学家。1596年3月31日生于图伦省拉埃(今称拉埃―笛卡儿);1650年2月11日卒于瑞典斯德哥尔摩。
1612年从法国最好的学校之一 ——拉费里舍的耶稣会学校毕业,同年去普瓦捷大学攻读法学,1616年获该校博士学位。取得学位之后,他就暗下决心:今后不再仅限于书本里求知识,更要向“世界这本大书”求教,以“获得经验”,而且要靠理性的探索来区别真理和谬误。
主要贡献
毕业后,他背离家庭的传统职业,开始探索人生之路。自1618年起,先在军队里当过几年兵,离开军队之后便到德国,丹麦,荷兰,瑞士,意大利等国游历,所见所闻丰富了他的见识,更重要的是对当时科学的最新成果增强了了解。1628年定居荷兰,在那里生活了 20年,写出了哲学,数学和自然科学一系列著作。他先后出版了《形而上学的沉思》和《哲学原理》两本名著,前者是关于物理学的主要基础,后者主要是阐述他在物理学和生物学方面的研究成果。
他的哲学思想受到很多人的推崇,黑格尔(Hegel)称他是“现代哲学之父”。他是将哲学思想从传统的经院哲学束缚中解放出来的第一个人,是唯理论的创始人。
笛卡儿对数学的最大贡献是创立了解几何学。他认为数学比其他科学更符合理性的要求。他是以下列身份的结合来研究数学的,作为哲学家、作为自然界的探索者、作为一个关心科学用途的人。他的基本思想事要建立起一种普通的数学,使算术,代数和几何统一起来。他曾说:“我决心放弃那些仅仅是抽象的几何,这就是说,不再去考虑那些仅仅是用来练习思维的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”为此他写了《几何学》。笛卡儿在《几何学》所阐发的思想,被弥尔(Mill)称作“精密科学进步中最伟大的一步”。
笛卡儿的理论以两个观念为基础:坐标观念和利用坐标方法把带有两个未知数的任意代数方程看成平面上的一条曲线。他的《几何学》共分三个部分:第一部分包括对一些代数式作几何的原则解释,在这一部分中,笛卡儿把几何算术化了;第二部分讨论了曲线的分类法以及作曲线的切线的方法;第三部分涉及高于二次方程的解法,指出了,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则。指出了多项式方程: 的正根的最多数目等于系数变化的次数,而负根的最多数目等于两个正号和两个负号连续出现的次数,但他没有给出证明。
在他的《几何学》中第一次出现变量与函数的思想。笛卡儿所谓的变量,是指具有变化长度而不变方向的线段,还指连续经过坐标轴上所有点的数字变量,正是变量的这两种形式使笛卡儿试图创造一种几何与代数互相渗透的科学。笛卡儿的功绩是把数学中两个研究对象“形”与“数”统一起来,并在数学中引入“变量”,完成了数学史上一项划时代的变革。对此恩格斯给予了极高的评价:“数学中转折点是笛卡儿的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”
应该指出,笛卡儿的坐标系是不完备的,他未曾引入第二条坐标轴,即y轴。另外笛卡儿也没有考虑横坐标的负值。
笛卡儿对韦达所采用的符号作了改进,他用字母表中开头几个字母 等表示已知数,而用末尾几个字母 等表示未知数,这种表示法一直沿用至今。他还考虑过高次抛物线,并且给出了作摆线切线的相当精巧的方法。
笛卡儿认为科学的本质是数学。他说“我尤其对数学推理的确实性与明了性感到高兴。“他强调科学的目的在于“造福人类”,使人成为自然界的“主人和统治者”。
笛卡儿死于肺炎。在教会控制下的学术界,对笛卡儿的逝世十分冷淡,只有几个友人为他送葬。 随着笛卡儿的数学和哲学思想影响的扩大,法国政府在笛卡儿去世后18年,才将其骨灰运回安葬在巴黎名人公墓。在评论笛卡儿的骨灰回归他的故土法国时,德国数学家雅克比幽默地说:“占有伟人的骨灰,通常比他们活着的时候占有他们本人更方便。”1799年又将其骨灰置于历史博物馆,1819年移入圣日耳曼圣心堂中,其墓碑上刻着:笛卡儿,欧洲文艺复兴以来,第一个为争取并保证理性权利的人。
数学家的名人故事 篇六
尼尔斯·亨利克·阿贝尔(1802年8月5日-1829年4月6日),挪威数学家,在很多数学领域做出了开创性的工作。他最著名的一个结果是首次完整给出了高于四次的一般代数方程没有一般形式的代数解的证明。这个问题是他那时最著名的未解决问题之一,悬疑达250多年。他也是椭圆函数领域的开拓者,阿贝尔函数的发现者。尽管阿贝尔成就极高,却在生前没有得到认可,他的生活非常贫困,死时只有27岁。
阿贝尔是十九世纪挪威出现的最伟大数学家。他的父亲是挪威克里斯蒂安桑主教区芬杜小村庄的牧师,全家生活在穷困之中。在1815年,当他进入了奥斯陆的一所天主教学校读书,他的数学才华便显露出来。经他的老师霍尔姆伯的引导下,他学习了不少当时的名数学家的著作,包括:牛顿、欧拉、拉格朗日及高斯等。
1820年,阿贝尔的父亲去世,照顾全家七口的重担突然交到他的肩上。虽然如此,1821年阿贝尔透过霍姆彪的补助,仍可进入奥斯陆的克里斯蒂安尼亚大学,即奥斯陆大学就读,於1822年获大学预颁学位,并由霍姆彪的资助下继续学业。
在学校里,他几乎全是自学,同时花大量时间作研究。1823年当阿贝尔的第一篇论文发表后,他的朋友便力请挪威政府资助他到德国及法国进修。
这篇《一元五次方程没有代数一般解》论文,正确解决了这个几百年来的难题:即五次方程不存在代数解。后来数学上把这个结果称为阿贝尔-鲁芬尼定理。阿贝尔认为这结果很重要,便自掏腰包在当地的印刷馆印刷他的论文。因为贫穷,为了减少印刷费,他把结果紧缩成只有六页的小册子。
阿贝尔满怀信心地把这小册子寄给外国的数学家,包括德国被称为数学王子的家高斯,希望能得到一些反应。可惜文章太简洁了,没有人能看懂。高斯收到这小册子时觉得不可能用这么短的篇幅证明这个世界著名的问题----连他还没法子解决的问题,于是连拿起刀来裁开书页来看内容也懒得做,就把它扔在书堆里了。高斯错过了这篇论文,不知道这个著名的代数难题已被解破。
1826年夏天,他在巴黎造访了当时最顶尖的数学家,并且完成了一份有关超越函数的研究报告。这些工作展示出一个代数函数理论,现称为阿贝尔定理,而这定理也是後期阿贝尔积分及阿贝尔函数的理论基础。他在巴黎被冷落对待,他曾经把他的研究报告寄去科学学院,望可得到好评,但他的努力也是徒然。他在离开巴黎前染顽疾,最初只以为只是感冒,后来才知道是肺结核病。
在1828年冬天,阿贝尔的病逐渐严重起来。在他圣诞节去芬罗兰探他的未婚妻克莱利·肯姆普期间,病情便更恶化。到1829年1月时,他已知自己寿命不长,出血的症状已无法否认。直至1829年4月6日凌晨,阿贝尔去世了。
直到阿贝尔去世前不久,人们才认识到他的价值。1828年,四名法国科学院院士上书给挪威国王,请他为阿贝尔提供合适的科学研究位置,勒让德也在科学院会议上对阿贝尔大加称赞。在阿贝尔死後两天,克列尔写信说为阿贝尔成功争取於柏林大学当数学教授,可惜已经太迟,一代天才数学家已经在收到这消息前去世了。
此后荣誉和褒奖接踵而来,1830年他和卡尔·雅可比共同获得法国科学院大奖。阿贝尔在数学方面的成就是多方面的。除了五次方程之外,他还研究了更广的一类代数方程,后人发现这是具有交换的伽罗瓦群的方程。为了纪念他,后人称交换群为阿贝尔群。阿贝尔还研究过无穷级数,得到了一些判别准则以及关于幂级数求和的定理。这些工作使他成为分析学严格化的推动者。
阿贝尔和雅可比是公认的椭圆函数论的奠基者。阿贝尔发现了椭圆函数的加法定理、双周期性、并引进了椭圆积分的反演。阿贝尔这一系列工作为椭圆函数论的研究开拓了道路,并深刻地影响着其他数学分支。埃尔米特曾说:阿贝尔留下的思想可供数学家们工作150年 。
科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责审查。柯西把稿件带回家中,究竟放在什么地方,竟记不起来了。直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了12年之久。
这些迟来的荣誉对这位数学家已经没有任何意义了,这位数学天才在他短暂的一生中为数学的发展做出了巨大的贡献,虽然生活拮据,虽然怀才不遇,但是在困境中他依然坚持数学的研究。这种精神和阿贝尔的数学贡献同样珍贵。