数列的通项公式的教学反思 篇一
在数学教学中,数列的通项公式是一个重要的概念,它可以帮助学生更好地理解数列的规律性,进而解决各种数学问题。然而,在教学实践中,我们也需要不断反思和改进教学方法,以提高学生的学习效果。
首先,我们需要确保学生对数列的概
数列的通项公式的教学反思 篇三
数列的通项公式的教学反思
1、爱因斯坦说过:“兴趣是最好的老师。”新课程的教材比以前有了更多的背景足以说明。本节也以国际象棋的故事为引例来激发学生的学习兴趣,然而却在求和公式的证明中以“我们发现,如果用公比乘…”一笔带过,这个“发现”却不是普通学生能做到的,他们只能惊叹于解法的神奇,而求知欲却会因其“技巧性太大”而逐步消退。因此如何在有趣的数学文化背景下进一步拓展学生的视野,使数学知识的发生及形成更为自然,更能贴近学生的认知特征,是每一位教师研讨新教材的重要切入点。
2、“课程内容的呈现,应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则。”“教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。”这些都是《数学课程标准》对教材编写的建议,更是对课堂教学实践的要求。然而,在新课程的
教学中,“穿新鞋走老路”仍是常见的现状,“重结果的应用,轻过程的探究”或者是应试教育遗留的祸根,却更与教材的编写,教师对《课程标准》、教材研究的深浅有关,更与课堂教学实践密切相关。我们也曾留足时间让学生思考,却没有人能“发现”用“公比乘以①的两边”,设计“从特殊到一般”即由2,3,4,…到q,再到 ,也是对教学的不断实践与探索的成果。因此,新课程教材留给教师更多发展的`空间,每位教师有责任也应当深刻理会《标准》的理念,认真钻研教材,促进《标准》及教材更加符合学生的实际。3、先看文[1]由学生自主探究而获得的两种方法:
且不说初中教材已经把等比定理删去,学生能获得以上两种方法并不比发现乘以来得容易,无奈之下,有的教师便用“欣赏”来走马观花地让学生感受一下,这当然更不可取。
回到乘比错位相减法,其实要获得方法1并不难:可以用q乘以 ,那么是否可以在 的右边提出一个q呢?请看:
与 比较,右边括号中比少了一项: ,则有
以上方法仅须教师稍作暗示,学生都可完成。
对于方法2,若去掉分母有 ,与方法1是一致的。
4、在导出公式及证明中值得花这么多时间吗?或者直接给出公式,介绍证明,可留有更多的时间供学生练习,以上过程,教师讲的是不是偏多了?
如果仅仅是为了让学生学会如何应试,诚然以上的过程将不为人所喜欢,因为按此过程,一节课也就差不多把公式给证明完,又哪来例题与练习的时间呢?
但是我们要追问:课堂应教给学生什么呢?课堂教学应从庞杂的知识中引导学生去寻找关系,挖掘书本背后的数学思想,挖掘出基于学生发展的知识体系,教学生学会思考,让教学真正成为发展学生能力的课堂活动。因此,本课例在公式的推导及证明中舍得花大量时间,便是为了培养学生学会探究与学习,其价值远远超过了公式的应用。