高一数学命题练习题归纳
课题:命题
逆命题:若 x = 0或 = 0 则 x = 0
常见词的否定
学生会用举范例证明假命题。
四种命题关系表
注:____是_____的____条件
在回顾概念的同时知晓其中的深层的含义、联系、一般应用方法。
资源1、设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.逆命题:当c>0时,若ac>bc,则a>b.它是真命题;
否命题:当c>0时,若a b,则ac bc.它是真命题;
逆否命题:当c>0时,若ac bc,则a b.它是真命题.
资源2、指出下列各题中,P是q的什么条件?
①P:0<x<3 q:|x-1|<2 ②P:(x-2)(x-3)=0 q:x=2
③P:c=0 q:抛物线=ax2+bx+c过原点 ④P:A B S q:CSB CSA
⑤P: q: 均是非零向量)
⑥P:对任意的 ,点 都在直线 上 q:数列 是等差数列 让学生体会得出:当一个命题的真假不易判断时,可考虑判断其等价命题的真假;
资源3、已知p: ,q: ,若┑ ┑ 的充分不必要条件,求实数的取值范围。
资源4、若a2能被2整除,a是整数,求证:a也能被2整除.
证:假设a不能被2整除,则a必为奇数,
故可令a=2+1(为整数),
由此得a2=(2+1)2=42+4+1=4(+1)+1,
此结果表明a2是奇数,
这与题中的已知条件(a2能被2整除)相矛盾,
∴a能被2整除.
反证法证明的掌握
资源5、数集A满足条件;若a∈A,则有 , (1)当2∈A时,求集合A;(2)若a∈R,
求证:A不可能是单元素集合反证法证明的掌握
活动4归纳小结
活动5巩固提高附作业巩固发展提高
命题
一、选择:
1、 ≥ ( A )
A充分而不必要条件 B必要而不充分条件
C充分必要条件 D即不充分也不必要条件
2、给出如下的命题:①对角线互相垂直且相等的平面四边形是正方形;②00=1;③如果x+是整数,那么x,都是整数;④<3或>3.其中真命题的个数是……( D )
(A)3 (B)2 (C)1 (D)0 .
3、已知 是 的充分不必要条件, 是 的'必要条件, 是 的必要条件.那么 是 成立的:( A )
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
4、一元二次方程 有一个正根和一个负根的充分不必要条件是( C )
(A) (B) (C) (D)
二、填空:
5、写出“a,b均不为零”的
(1)充分非必要条件是 (2)必要非充分条件是:_ _
(3)充要条件是 (4)非充分非必要条件是 0
6、在以下空格内填入“充分非必要条件”,“必要非充分条件”,“充要条件”,“非充分非必要条件”
(1)“a>0且b>0”是“a+b>0且ab>0”的 充要条件
(2)“a>2且b>2”是“a+b>4且ab>4”的 充分非必要条件
(3) 的_______必要非充分________条件
7、 的一个充分不必要条件是____ ___________
8、指出下列各题中甲是乙的什么条件?
(1)甲:a、b、c成等比数列;乙:b2=ac______充分非必要条件_________________.
(2)甲: ______必要非充分________
(3)甲:直线l1∥l2,乙:直线l1与l2的斜率相等______非必要非充分_____
三、解答
9、已知命题P:方程x2+x+1=0有两个不相等的负根;Q:方程4x2+4(-2)x+1=0无实根.若P或Q为真,P且Q为假,求的取值范围.
答案:
10、试写出一元二次方程 ,①有两个正根②两个小于 的根
③一个正根一个负根的一个充要条件。
答案:略
11、a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为集合M和N,试判断“ ”是“M=N”的什么条件,并说明理由。答案:非充分非必要
12、已知 均为 上的单调增函数。
命题1: 为 上的单调增函数;命题2: 为 上的单调增函数
判断两个命题的正确性,并说明理由;不正确的话给出附加条件,使之成为真命题。
答案:真,假;