初中数学教学设计【精简6篇】

时间:2019-06-02 05:27:11
染雾
分享
WORD下载 PDF下载 投诉

初中数学教学设计 篇一

标题:应用题教学设计——解决实际问题的数学思维

引言:

数学是一门应用广泛的学科,而应用题是数学学习中的重要组成部分。通过解决实际问题,学生能够将数学知识应用到实际生活中,培养他们的数学思维能力。本文将介绍一堂关于应用题教学设计的数学课。

教学目标:

1. 学生能够理解应用题的概念,知道如何将实际问题转化为数学问题。

2. 学生能够熟练运用所学的数学知识解决应用题。

3. 学生能够培养解决实际问题的数学思维能力。

教学步骤:

1. 引入:通过一个有趣的问题引起学生的兴趣,例如:“如果你有1000元,你会怎么花?”引导学生思考如何将这个问题转化为数学问题。

2. 概念讲解:介绍应用题的概念,解释如何将实际问题转化为数学问题,并举例说明。例如,如果要计算小明买了3件衣服,每件衣服价格为250元,他支付500元,问他还需要多少钱。

3. 练习:给学生一些简单的应用题练习,让他们尝试将实际问题转化为数学问题,并解决。例如,小明有20个苹果,他每天吃掉3个,问他吃完这些苹果需要多少天。

4. 拓展:给学生一些复杂的应用题,让他们运用所学的数学知识解决。例如,小明每天跑步5公里,他计划跑100天,问他跑完100天后总共跑了多少公里。

5. 总结:让学生总结所学的内容,回答以下问题:应用题的特点是什么?解决应用题需要哪些数学思维能力?

6. 小结:对本堂课的内容进行小结,并布置相关的作业。

教学评价:

通过这样的教学设计,学生能够在解决实际问题的过程中培养数学思维能力,提高他们的数学应用能力。同时,通过练习和拓展,学生能够逐渐提高解决应用题的能力,更好地理解和掌握所学的数学知识。

初中数学教学设计 篇二

标题:几何图形的教学设计——培养学生的空间想象力

引言:

几何是数学的重要分支之一,而几何图形的学习对于学生的空间想象力和几何思维能力的培养至关重要。本文将介绍一堂关于几何图形的教学设计。

教学目标:

1. 学生能够认识并理解常见几何图形的概念和性质。

2. 学生能够绘制和构造常见几何图形。

3. 学生能够通过几何图形的学习培养空间想象力和几何思维能力。

教学步骤:

1. 引入:通过展示一些常见的几何图形,引起学生的兴趣和好奇心。例如,给学生展示一个正方形和一个长方形,让他们观察并思考它们的特点。

2. 概念讲解:介绍几何图形的概念和性质,并举例说明。例如,解释正方形的定义和性质,展示不同大小的正方形,并让学生发现它们的共同特点。

3. 练习:给学生一些练习题,让他们绘制和构造不同的几何图形。例如,要求学生绘制一个等边三角形和一个等腰梯形。

4. 拓展:给学生一些拓展题,让他们运用所学的知识解决更复杂的几何问题。例如,要求学生构造一个正方形,它的面积是9平方厘米。

5. 总结:让学生总结所学的内容,回答以下问题:几何图形的特点是什么?为什么几何图形的学习对于培养空间想象力和几何思维能力很重要?

6. 小结:对本堂课的内容进行小结,并布置相关的作业。

教学评价:

通过这样的教学设计,学生能够更好地理解和掌握几何图形的概念和性质,提高他们的几何思维能力和空间想象力。同时,通过练习和拓展,学生能够逐渐提高绘制和构造几何图形的能力,更好地应用所学的几何知识。

初中数学教学设计 篇三

  一、素质教育目标

  (一)知识教学点

  1、要求学生学会用移项解方程的方法。

  2、使学生掌握移项变号的基本原则。

  (二)能力训练点

  由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力。

  (三)德育渗透点

  用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想。

  (四)美育渗透点

  用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美。

  二、学法引导

  1、教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。

  2、学生学法:练习→移项法制→练习。

  三、重点、难点、疑点及解决办法

  1、重点:移项法则的掌握。

  2、难点:移项法解一元一次方程的步骤。

  3、疑点:移项变号的掌握。

  四、课时安排

  3课时

  五、教具学具准备

  投影仪或电脑、自制胶片、复合胶片。

  六、师生互动活动设计

  教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成。

  七、教学步骤

  (一)创设情境,复习导入

  师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题。

  (出示投影1)

  利用等式的性质解方程

  (1)xx;(2)xxx;

  解:方程的两边都加7,解:方程的两边都减去x,

  得x,xx 得x,

  即x 、 合并同类项得x。

  【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础。

  提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?

  (二)探索新知,讲授新课

  投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识。

  (出示投影2)

  师提出问题:

  1、上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?

  2、改变的项有什么变化?

  学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,分四组,这样节省时间。

  师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号。

  【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础。

  师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项、这里应注意移项要改变符号。

  (三)尝试反馈,巩固练习

  师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项。

  学生活动:要求学生对课前解方程的变形能说出哪一过程是移项。

  【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式。

  对比练习:(出示投影3)

  解方程:(1);(2);

  (3);(4)、

  学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解。

  师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验、)

  【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则。

  巩固练习:(出示投影4)

  通过移项解下列方程,并写出检验。

  (1);(2);

  (3);(4)、

  【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成。

  (四)变式训练,培养能力

  (出示投影5)

  口答:

  1、下面的移项对不对?如果不对,错在哪里?应怎样改正?

  (1)从,得到;

  (2)从,得到;

  (3)从,得到;

  2、小明在解方程时,是这样写的解题过程:

  (1)小明这样写对不对?为什么?

  (2)应该怎样写?

  【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”、要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。

  (出示投影6)

  用移项解方程:

  (1);(2);

  (3);(4)、

  【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目。

  学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分。

  (出示投影7)

  解下列方程:

  (1);(2);(3);

  (4);(5);(6)、

  【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识。

  (五)归纳小结

  师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点、②检验要把所得未知数的值代入原方程。

初中数学教学设计 篇四

  一教学目标

  1.通过案例理解正比例函数,能列出正比例函数关系式

  2.教会学生应用正比例函数解决生活实际问题的能力

  二教学重点

  理解正比例函数的概念

  三教学难点

  利用正比例函数解决生活实际问题

  四教学过程

  【提出问题】

  1.《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了千米,耗费了他150天时间。

  (1)阿甘大约平均每天跑步多少千米?

  (3)阿甘一个月(30天)的行程是多少千米?

  【生】列算式回答

  【师】点评总结

  2.写出下列变量间的函数表达式

  (1)正方形的周长l和半径r之间的关系【进一步抽象问题让学生思考】

  (2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?

  (3)下列函数关系式有什么共同点?(小组合作)【分析共同点和不同点,找出规律】

  (1)y=200x(2) l=2∏r(3) m=

  【生回答,师点评】

  【引入新课】

  1、正比例函数的概念:一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】

  2 、【例题讲解】

  例1在同一坐标系里,画出下列函数的图像:y==x y=3x

  解:【略】 【掌握函数图像的画法:列表,描点,连线】

  3、练习

  (1)已知正比例函数y=kx.当x=3时y=6 。求k的值

  (2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的?当销售金额为360元时,则售出了多少本这种笔记本?

  五课外作业

  【反思】

  由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。

初中数学教学设计 篇五

  教材分析

  1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。

  2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。

  学情分析

  1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。

  教学目标

  1.熟练掌握去括号时符号的变化规律;

  2.能正确运用去括号进行合并同类项;

  3.理解去括号的依据是乘法分配律。

  教学重点和难点

  重点

  去括号时符号的变化规律。

  难点

  括号外的因数是负数时符号的变化规律。

  教学过程

  一、创设情景问题

  青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。

  请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?

  解:这段铁路的全长为100t+120(t-0.5)(千米)

  冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。

  提出问题,如何化简上面的两个式子?引出本节课的学习内容。

  二、探索新知

  1.回顾:

  1你记得乘法分配率吗?怎么用字母来表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

  2.探究

  计算(试着把括号去掉)

  (1)13+(7-5)(2)13-(7-5)

  类比数的运算,去掉下面式子的括号

  (3)a+(b-c)(4)a-(b-c)

  3.解决问题

  100t+120(t-0.5)=100t-120(t-0.5)=

  思考:

  去掉括号前,括号内有几项、是什么符号?去括号后呢?

  去括号的依据是什么?

  三、知识点归纳

  去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  注意事项

  (1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;

  (2)括号内原有几项去掉括号后仍有几项.

  四、例题精讲

  例4化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  五、巩固练习

  课本P68练习第一题.

  六、课堂小结

  1.今天你收获了什么?

  2.你觉得去括号时,应特别注意什么?

  七、布置作业

  课本P71习题2.2第2题

初中数学教学设计 篇六

  (一)提出问题,导入新课

  1、解二元一次方程组

  问题

  1、母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁?

  解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。 由题意得

  26+x=3x 解法二:设母亲的年龄为x岁。 由题意得

  x=3(x-26)

  (二)精选讲例,探求新知

  例

  2、某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人?

  巩固练习 小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。

  (三)变式训练,激活学生思维

  问题

  3、小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。 问题

  4、已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:她认为可以购进A型和B型电脑,请你判断小红提出的方案是否合理,并通过计算说明。

  (四)课堂练习,巩固新知

  1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。

  2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。

  (五)拓展

  1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排?

  2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。

  ⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。

  ⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。

初中数学教学设计【精简6篇】

手机扫码分享

Top