圆的周长教学反思5篇
圆的周长学习的资料是“圆的周长”,借助学生已有的学习经验从“圆周长好处”的理解,立足于学生的亲身体验和自由表达,下面给大家分享圆的周长教学反思,欢迎借鉴!
圆的周长教学反思(一):
在《圆的周长》教学过程中,我打破了传统的课堂教学结构,注重培养学生的创新意识和实践潜力。整个过程学生从学生已有的知识经验出发,透过设疑、观察、猜想、验证、交流、归纳,亲历了探究圆的周长这个数学问题的过程,从中体验了成功解决数学问题的喜
悦或失败的情感,注重教学过程的探索性。《标准》在“教学要求”中,增加了“透过观察、操作、猜测等方式,培养学生的探索意识”的资料;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践潜力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水平,设计探索性和开放性的问题,给学生带给自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的构成和数学结论的获得,以及数学知识的应用”,“构成初步的探索和解决问题的潜力”。
(1)开放教学过程,体现学生主体。
在圆的周长这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题—探究—应用—反思”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。
(2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原先的知识库中提取有效的信息,透过观察、猜想、验证、交流,逐步得出超多的可信度较高的素材,然后抽象概括、构成结论,并进行应用。在这个过程中,透过学生探索与创造、观察与分析、归纳与验证等一系列数学活动,自主发现、合作探索圆的周长与直径的倍数关系,使学生感受到数学问题的探索性,并从中认识到数学思考过程的条理性和数学结论的确定性。
(3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:应对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得用心的情感体验。
总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识和合作潜力,问题让学生自己和同学之间的合作去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识和合作潜力,发挥了学生的主体作用。
圆的周长教学反思(二):
本节课是在学生掌握了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。
成功之处:
1.充分理解周长的概念,加强对好处的理解。学生以前学过周长的概念,对长方形、正方形、平行四边形、三角形、梯形的周长有了必须的认识,明白封闭图形一周的长度就是这个图形的周长,在此基础上,理解“围成圆的曲线的长度就是圆的周长”。在教学中透过复习以前学过的图形的周长,然后引出主题图,透过实际场景丰富学生已有经验,逐渐内化为学生对周长的好处的理解,明确周长就是一条线,但是这条线是由曲线构成的图形。
2.加强动手操作,探索发现规律。在教学中,透过让学生用不同的方法,如绕绳法、滚动法和折叠法得出直径2厘米、3厘米、4厘米、5厘米圆的周长与直径的比值总是3倍多一些,从而使学生明确圆的周长总是直径的∏倍,由此推导出圆的周长计算公式。
不足之处:
由于学生在课前预习了这部分资料,导致有一个组没有透过动手操作,得出的结果都是3.14倍,看来学生对于操作没有给予足够的重视,只注重了结果的得出,而忽略了规律的呈现。
再教设计:
在教学完圆的周长时,要让学生注意区别圆周长的一半和半圆周长,要注意呈现圆的周长与直径、半径的关系即当圆的直径或半径扩大2倍、3倍,圆的周长扩大几倍的练习拓展,并藉此联系正方体的棱长之和、表面积和体积中,当棱长扩大2倍、3倍,正方体的棱长之和、表面积和体积扩大几倍的练习拓展,以此来增加彼此之间的联系。
圆的周长教学反思(三):
《圆的周长》是北师大版数学十一册教科书第一单元第四课的资料。本节课透过引导学生对圆周率的探求,推导出圆周长的计算公式。我分成四个层次来进行教学:
(1)在具体情境中,研究不同的状况能够用不同的方法来测量一些实物中的圆的周长,如用“绕、滚”的方法来测量。但对于象黑板上画的圆,当学生发现测这个圆的周长不能用“绕、滚”的'方法来测量,务必研究一种求圆周长的方法。
(2)在推导计算圆周长的公式时,先启发学生透过对不同大小的圆进行观察,思考它们的周长与它的什么有关系?
(3)分小组进行,研究周长与直径有什么关系,将数据填到书上,进行观察思考,得出“圆的周长总是直径的三倍多一点的结论”,理解圆周率π的好处。
(4)推导出圆周长的计算公式,并进行实际运用,解决生活中简单的数学问题。
透过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括潜力及逻辑思维潜力。
教学反思:
1、数学与实际生活相联系
本课的素材来源于生活,从学生熟知的身边圆形物体入手,让学生指出看到的圆形并摸一摸圆的周长指的是哪里。较好的体现了新课改的理念:数学来源于生活又应用于生活。
2、让学生大胆实践,重视了学生的测量方法的培养。
听不如看,看不如做。新课标提出要让学生动手做数学也是这个道理。于是我让学生亲自动手实践,想出根据不同的实际状况,选取测量圆的周长的办法,在圆的周长测量过程中,教师引导学生采用多种不同的方法,培养学生测量技能和思维的灵活性。
3、合作交流,培养学生的团队意识与协调潜力。
在测量圆的周长与直径的长度及计算不同的圆的周长与直径的比值都有什么特点时,学生产生了需要合作的需要,在合作探索的过程中,学生主动参与,体验了发现数学的乐趣,同时也培养了学生的探索实践及合作潜力。
圆的周长教学反思(四):
《圆的周长》这节资料是在学生学习了正方形和长方形的基础上,在学习了圆的初步认识,明白圆心、半径、直径及圆的特性的基础上,进而学习圆的周长的。
本课的重点是圆的周长的计算方法,难点是圆的周长的计算公式推导过程,主要是圆周率的理解及其推导。
本节课学生主要采取自主探究,合作学习的学习方法,在学生掌握基本知识的同时,促进他们的学习方法的养成,培养他们的数学素养。其主要为合作学习,让学生学会分析,学会分工,学会分享。其主要采用以下方法:
首先,我让学生在动手操作的活动中探索出“用线绕”,“在直尺上滚”等直接测量圆的周长的方法,在此基础上引出新的问题:“那我们能不能用这些方法测量出圆形跑道的周长是多少?在黑板上画上一个小圆如何测出它的周长?甩球出现的圆能量出它的周长吗?”使学生自己切实体会到“有些圆的周长没办法用绕线和滚动的方法测量出来”,从而再去探索新的方法,这使得下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。
在接下来的引导中,我又较好地处理了圆的周长公式中,圆的周长与圆的直径的关系。探索圆的周长为什么要思考到圆的半径或直径?有很多案例在这一点的处理上显得突兀。在这节课中,我提出“圆的周长和什么有关系呢”当学生说出圆的周长与直径有关时,教师又进一步追问:“你觉得是和直径有关系,说说理由好吗”这就唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来的猜想、探索、验证自然、顺畅,有了根基。
个性是在测量周长与计算周长与直径的比值这一环节中,我采用了小组合作法,小组同学有的测量,有的记录,有的用计算器计算。让学生在具体实验中,体会圆的周长是直径的三倍多一点,从而导入圆周率的教学,明白圆周率的相关知识。进一步推导出c=πd,c=2πr。动手操作,合作探究加深了学生对所学知识的理解,到达突破难点的效果,体现了课堂教学的有效性。学生的合作潜力、思维潜力、个性是创新潜力和实践潜力也能够得到发展。
同时,课堂上还充分发挥了多媒体的作用。使学生在生动、形象的画面中加深对所学知识的理解。
圆的周长教学反思(五):
本课的教学设计以上海世博会作为一条主线,贯穿课堂的始终,体此刻以下四个方面:首先,在创设情境时,我在理解教材的基础上,激活教材,创造性地使用教材,以学生的兴趣作为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我向学生提出质疑,以相同的方法测量赤道的长度,在质疑中激发学生的学习兴趣,并促使学生产生探究一般方法的迫切愿望。第三,学生透过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,第三次回到情景中,使学生在掌握新资料的基础上,解决实际问题,培养学生的应用意识。最后,在巩固新知解决问题的环节中,以世博会为背景,设计了三道不同层次的练习题,这三道题实现了从基础练到拓展练的跨越,提高学生发现信息、解决问题的潜力。
在真正的教学过程中,我发现世博会的情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣。由于前面“圆的认识”的成功铺垫,因此本节课学生透过动手操作、自主探究、合作交流、展示等活动,理解了“化曲为直”的数学思想方法。在推导公式的过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。另外,我及时对学生的发言进行点拨、激励,比如当学生展示巧妙的方法时我赞扬学生的想法有创意,进一步提高了学生用心学习的主动性,使学生体验到获得成功的乐趣。
课后,透过反思,使我对本课的教学有了新的认识,比如:在对学生的表达进行评价时,艺术性稍显不足,另外,我对课堂的掌控和把握潜力还需要提高。虽然对教材进行了较为深入地分析,但还没做到彻底地理解。
在未来的工作中,我将弥补以上不足之处,提高个人理论素养,使自己的教学趋于完美。