五个数学家的小故事【精选3篇】

时间:2011-06-05 04:29:42
染雾
分享
WORD下载 PDF下载 投诉

五个数学家的小故事 篇一

在一个遥远的数学学院里,住着五位优秀的数学家。他们分别是阿尔贝特、贝蒂、查理、迪恩和艾米。每个人都有自己独特的数学天赋和研究领域。

阿尔贝特是一个擅长几何学的数学家,他总是能够轻松地解决各种复杂的空间问题。贝蒂则是一个数论方面的专家,她对数学中的数字规律有着敏锐的洞察力。查理是一个代数学家,他研究的是各种代数结构和方程的解法。迪恩是一个拥有深厚分析学知识的数学家,他擅长研究各种极限和函数的性质。艾米则是一个数学史研究者,她对数学发展的历史和背景有着浓厚的兴趣。

这五位数学家每天都在自己的研究领域里勤奋工作,他们相互合作、交流,一同探讨数学世界的奥秘。有时候,他们也会进行一些有趣的数学游戏,比如解决各种数学难题,讨论数学史上的伟大数学家们,或者一起探讨数学领域的未来发展方向。

尽管每个人的研究领域不同,但是他们之间却建立起了深厚的友谊和合作关系。每当他们遇到困难时,总能够相互帮助、支持,一同攻克难关。他们相信,只有团结合作,才能够更好地发现数学世界的奥秘,推动数学领域的进步。

五个数学家的小故事 篇二

阿尔贝特、贝蒂、查理、迪恩和艾米五位数学家,各有所长,各有所爱。他们在数学学院里一起学习、研究,共同探索数学世界的奥秘。

有一天,他们接到了一个神秘的数学挑战。一位数学家提出了一个极其复杂的数学难题,要求他们在一周内解决。这个难题涉及几何学、代数学、数论、分析学和数学史等多个领域,对解题者的数学能力和智力要求极高。

面对这个挑战,阿尔贝特、贝蒂、查理、迪恩和艾米决定共同合作,一起攻克这个难题。每个人都根据自己的专长和兴趣,从不同的角度入手,相互协作、交流,共同寻找解题的线索。

经过一周的努力,五位数学家终于解决了这个数学难题,得出了令人瞠目结舌的答案。他们不仅展现了自己的数学才华,也体现了团结合作的力量。在这个过程中,他们不仅增进了彼此之间的友谊,也开拓了自己的数学视野,收获了深刻的数学体会。

这个数学挑战成为了五个数学家之间的美好回忆,也成为了他们数学研究道路上的一次宝贵经历。他们深信,只要团结合作,就能够战胜任何困难,创造出更多的数学奇迹。五个数学家的故事,也让人们看到了数学的魅力和力量。

五个数学家的小故事 篇三

  数学家专注于数、数据、集合、结构、空间、变化。小编整理的关于数学家的小故事,供参考!

  陈景润

  陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,因此有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

  1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。

  一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个搞笑的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都能够表示为两个奇数之和。正因这个结论没有得到证明,因此还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。

  它像一个美丽的光环,在咱们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。

  从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时刻他最爱到图书馆,不仅仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。

  兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。

  祖冲之

  祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他个性爱好研究数学,也钟爱研究天文历法,经常观测太阳和星球运行的状况,并且做了详细记录。

  宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,能够更加专心研究数学、天文了。

  我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时刻)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。(企业标语大全)

  公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不就应改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不好拿空话吓唬人嘛。”宋孝武帝想帮忙戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。

  尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他以前对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3。1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

  祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)

上试航过,一天能够航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。

  华罗庚

  有一次,他跟邻居家的孩子一齐出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他十分想去看个究竟。于是他就对邻居家的孩子说:

  “那边可能有好玩的,咱们过去看看好吗?”

  邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕。”

  胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。

  两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得十分搞笑。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?”(好听的微信名字)

  邻居家的孩子迷惑地望着他说:"我怎样能知道呢?你怎样会问出这样的傻问题,难怪人家都叫你‘罗呆子’。”

  华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?”

  邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再思考这个问题吧!但是你要是能当上数学家,恐怕就要日出西山了。”

  华罗庚不顾邻家孩子的嘲笑,坚定地说:“以后我必须能想出办法来的。”

  当然,计算出这些石人、石马的重量,对于之后果真成为数学家的华罗庚来讲,根本不在话下。

  金坛县城东青龙山上有座庙,每年都要在那里举行庙会。少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一齐赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,立刻坐着头插羽毛、身穿花袍的“菩萨”。每到之处,路上的老百姓纳头便拜,十分虔诚。拜后,他们向“菩萨”身前的小罐里投入钱,就能够问神问卦,求医求子了。

  华罗庚感到好笑,他自我却不跪不拜“菩萨”。站在旁边的大人见后很生气,训斥道:

  “孩子,你为什么不拜,这菩萨可灵了。”

  “菩萨真有那么灵吗?”华罗庚问道。

  一个人说道:“那当然,看你小小年纪千万不好冒犯了神灵,否则,你就会倒楣的。”(美文摘抄)

  “菩萨真的万能吗?”这个问题在华罗庚心中盘旋着。他不坚信一尊泥菩萨真能救苦救难。

  庙会散了,看热闹的老百姓都回家了。而华罗庚却远远地跟踪着“菩萨”。看到“菩萨”进了青龙山庙里,小华罗庚急忙跑过去,趴在门缝向里面看。只见“菩萨”能动了,他从立刻下来,脱去身上的花衣服,又顺手抹去脸上的妆束。门外的华庚惊呆了,原来百姓们顶礼膜拜的“菩萨”竟是一村民装扮的。

  华罗庚最后解开了心中的疑团,他将“菩萨”骗人的事告诉了村子里的每个人,人们最后恍然大悟了。从此,人们都对这个孩子刮目相看,再也无人喊他“罗呆子”了。正是华罗庚这种打破砂锅问到底的精神,成就了他以后的成就。

  "数学之神"——阿基米德

  阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去领悟。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

  之后阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他透过超多实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

  《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

  《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

  《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的"阿基米德公理"。

  《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

  《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。

  《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。

  《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

  《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。

  丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。透过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

  正正因他的杰出贡献,美国的E。T。贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。但是以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

  八岁的高斯发现了数学定理

  德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自我学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

  长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,此刻电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

  他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还就应处罚他们,使自我在这枯燥的生活里添一些乐趣。

  这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在这天捉这些学生处罚了。

  “你们这天替我算从1加2加3一向到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

  教室里的小兄弟姐妹们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小兄弟姐妹加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

  还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

  老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

  但是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

  数学老师本来想怒吼起来,但是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,正因他自我以前算过,得到的数也是5050,这个8岁的小鬼怎样这样快就得到了这个数值呢?

  高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自我以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自我进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

1.数学家的经典小故事

2.数学科学家的小故事

3.五个正能量小故事

4.五个哲理小故事

5.十五个经典推理小故事

6.数学小故事10则

7.数学家的故事

8.著名科学家的小故事

9.科学家的小故事

10.科学家的感人小故事

五个数学家的小故事【精选3篇】

手机扫码分享

Top