《抽屉原理》教学设计【实用6篇】

时间:2018-04-09 07:40:39
染雾
分享
WORD下载 PDF下载 投诉

《抽屉原理》教学设计 篇一

抽屉原理,是数学中一个非常重要的概念,也是许多数学问题中常用的一种解题策略。在教学设计中,如何有效地向学生传授抽屉原理,让他们能够灵活运用这一概念解决问题,是我们需要思考和努力的方向。

首先,在介绍抽屉原理的时候,我们可以从生活中的例子出发,引导学生理解这一概念的实际意义。例如,我们可以以抽屉为例,描述如果有10双袜子和9个抽屉,那么至少有一个抽屉里会有两双袜子的情况。通过这种贴近生活的例子,可以帮助学生更直观地理解抽屉原理的应用。

其次,我们可以设计一些具体的问题,让学生通过运用抽屉原理来解决。比如,设计一个问题:有10个人参加一次派对,其中至少有两个人生日相同的概率是多少?通过这个问题,学生需要思考如何利用抽屉原理来计算生日相同的概率,从而锻炼他们的逻辑推理能力。

另外,在教学设计中,我们也可以引导学生通过实际操作来体会抽屉原理的应用。例如,让学生自行设计一个实验,验证抽屉原理在实际中的有效性。通过这种实践性的学习方式,可以让学生更深入地理解和掌握抽屉原理,并提高他们的问题解决能力。

最后,在教学设计中,我们需要注重培养学生的创新思维和团队合作能力。可以设计一些开放性的问题,让学生结合抽屉原理提出自己的解决方案,并鼓励他们与同学一起讨论、分享和合作。通过这种合作性学习,可以激发学生的思维激情,培养他们解决问题的能力。

综上所述,《抽屉原理》教学设计需要注重理论联系实际、问题导向、实践性学习和合作性学习等方面的设计。通过这样的教学设计,可以帮助学生更好地理解和应用抽屉原理,提高他们的数学解决问题能力。

《抽屉原理》教学设计 篇二

抽屉原理是一种非常重要的数学原理,也是许多数学问题的解题思路之一。在教学设计中,如何有效地向学生传授抽屉原理,让他们能够熟练运用这一概念解决问题,是我们需要思考和努力的方向。

首先,在教学设计中,我们可以通过引入一些生动有趣的故事或情景,激发学生的学习兴趣。例如,可以设计一些趣味性的问题,让学生在解决问题的过程中体会抽屉原理的妙处。通过这种趣味性的学习方式,可以提高学生对抽屉原理的理解和记忆。

其次,我们可以设计一些具体的案例分析,让学生通过实际问题的解决来理解抽屉原理的应用。例如,设计一个问题:某班有30名学生,其中男生和女生的比例是3:2,那么至少有两名同性别的学生坐在相邻座位上的概率是多少?通过这个案例,可以让学生通过具体的计算来理解抽屉原理的应用。

另外,在教学设计中,我们也可以引导学生进行一些实际操作,让他们亲自动手来体验抽屉原理的奥妙。例如,可以设计一个实验:将10个不同颜色的球放入5个抽屉中,让学生通过实际操作来验证抽屉原理。通过这种实践性学习方式,可以让学生更深入地理解抽屉原理的应用。

最后,在教学设计中,我们需要注重培养学生的批判性思维和创新能力。可以设计一些开放性的问题,让学生通过自主探究和思考来解决问题,激发他们的创造力和思维能力。通过这样的设计,可以提高学生的问题解决能力和创新意识。

综上所述,《抽屉原理》教学设计需要注重趣味性、案例分析、实践性学习和培养创新能力等方面的设计。通过这样的教学设计,可以帮助学生更好地理解和应用抽屉原理,提高他们的数学解决问题能力。

《抽屉原理》教学设计 篇三

  1、出示例2

  把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。

  不难得出,总有一个抽屉至少放进3本。

  (2)指名说一说思维过程。

  如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

  2、如果一共有8本书会怎样呢10本呢?

  3、你能用算式表示以上过程吗?你有什么发现?

  7÷3=2……1(至少放3本)

  8÷3=2……2(至少放4本)

  10÷3=3……1(至少放5本)

  4、做一做

  11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

  四、质疑探究(5分)

  1、鸽巢问题怎样求?

  小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

  2、做一做。

  69页做一做2题。

《抽屉原理》教学设计 篇四

  教学内容

:人教版六年级下册第五单元数学广角

  教学目标:

  1、初步了解“抽屉原理”。

  2、引导学生用操作枚举或假设的方法探究“抽屉原理”的一般规律。

  3、会用抽屉原理解决简单的实际问题。

  4、经历从具体的抽象的探究过程,初步了解抽屉原理,提高学生又根据有条理的进行思考和推理的能力,体会比较的学习方法。

  教学重点:抽屉原理的理解和简单应用。

  教学难点:找出实际问题与抽屉原理的内在联系。

  教学过程:

  一、开展小游戏,引入新课。

  师:在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?

  师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

  师:开始。

  师:都坐下了吗?

  生:坐下了。

  师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两位同学”我说得对吗?

  生:对!

  师:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学原理——抽屉原理。

  二、实验探索

  第一步:研究4枝铅笔放进3个文具盒,有哪些不同的放法?你们又能从这些方法中发现什么有趣的现象?

  1、(出示)师:把4枝笔放进3个文具盒,有哪些不同的放法?(请一生示范)你们又能从这些放法中发现什么有趣的现象?

  2、师:接下来,就请同学们以小组为单位进行实验操作,并把放法和发现填在记录卡上。

  放法

  文具盒1

  文具盒2

  文具盒3

  最多放几枝

  A

  B

  C

  D

  我们的发现

  3、小组汇报交流。

  (4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

  生:不管怎么放,总有1个文具盒里至少有2枝铅笔。

  师:“总有”是什么意思?

  生:一定有。

  师:“至少”是什么意思?

  生:不少于2枝,可能是3枝或4枝。

  生小结:把4枝铅笔放进3个文具盒,总有一个文具盒至少放进2枝铅笔。(最多有2枝或2枝以上)

  4、师:把4枝笔饭放进3个文具盒里,不管怎么放,总有一个文具盒里至少有2枝铅笔。这是我们通过实际操作发现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找出至少数呢?

  生:我们发现如果每个文具盒里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个文具盒里,总有一个文具盒里至少有2枝铅笔。

  (学生操作演示)

  师:这种分法,实际就是先怎么分的?

  生众:平均分

  师:为什么要先平均分?

  生1:要想发现存在着“总有一个文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那个文具盒里,一定会出现“总有一个文具盒里一定至少有2枝”。

  生2:这样分,只分一次就能确定总有一个文具盒至少有几枝笔了。

  把笔尽量每个文具盒里都放,还要尽量平均放。怎样用算式表示呢?

  4÷3=1……11+1=2

  5、那照这样的思路:把6枝铅笔放进5个文具盒,怎样想?(用铅笔操作演示)6÷5=1……11+1=2

  把7枝铅笔放进6个文具盒,怎样想?……

  100枝铅笔放进99个文具盒呢?

  师提问:发现了什么规律?

  生小结,师整理:铅笔数比文具盒数多1,不管怎么放,总有一个文具盒里至少放进2枝铅笔。(同桌之间说一说)

  第二步:研究铅笔数比文具盒数不是多1的现象。

  1、师:研究到这儿,还想继续研究吗?还有哪些值得我们继续研究的问题?(生自主提问:如不是多1,什么是抽屉原理等等。)

  2、师:如果铅笔数比文具盒数不是多1,而是多2、3……,总有一个文具盒里至少会有几枝铅笔?

  (出示:把5本书放进2个抽屉里,总有一个抽屉里至少会有几本书呢?)

  生独立思考,在小组内交流,汇报。

  师:许多同学都没有再摆学具,用的什么方法?

  生:平均分。把5本书平均分到2个抽屉里,每个抽屉里放2本书,还剩一本书,无论放在哪个抽屉里,总有一个抽屉里至少有3本书。生:5÷2=2……12+1=3

  (出示:5本书放进3个抽屉呢?8本书放进5个抽屉呢?)

  5÷3=1……21+1=28÷5=1……31+3=4

  师:至少数为什么不是“商+余数”?(小组讨论,汇报)

  4、对比观察算式,你能发现求至少数的规律吗?

  物体数÷抽屉数=商……余数至少数=商+1

  5、总结抽屉原理,运用抽屉原理的关键是什么?(找准物体数和抽屉数),阅读相关资料。

  a÷n=b……c(c≠0)把a个物体放进n个抽屉里,总有一个抽屉里至少放进(b+1)个物体。

  三、应用原理。

  1、请你试一试。(口答,指出什么是物体数,什么是抽屉数)

  (1)6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一鸽舍,为什么?

  (2)把13只小兔关在5个笼中,至少有几只兔子要关在同一个笼里?

  (3)有5袋饼干,每袋10快,发给6个小朋友,总有一个小朋友至少分到几块饼干?

  2、下面的说法对吗?说说你的理由。

  向东小学6年级共有370名学生,其中六(2)班有49名学生。

  A、六年级里至少有2名学生的生日是同一天。

  (370个物体,366个抽屉)

  B、六(2)班只有5名学生的生日在同一月。

  (49个物体,12个抽屉,“只有”就是一定)

  C、六(2)至少有25位学生是同一性别。

  3、玩“猜扑克”的游戏。

  抽掉大小王,抽出5张牌,至少几张是同花色?5÷4=1……11+1=2

  抽15张至少有几张数字相同?15÷13=1……21+1=2

  4、学生把学生生活中能用抽屉原理解释的现象写下来。

  留心观察+细心思考=伟大发现

  四、全课总结。

《抽屉原理》教学设计 篇五

  (一)小结

  鸽巢问题的解答方法是什么?

  物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

  (二)检测

  1、填空

  (1)7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里。

  (2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书。

  (3)四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的。

  (4)任意给出3个不同的自然数,其中一定有2个数的和是( )数。

  2、选择

  (1)5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元。

  a、60 b、61 c、62 d、59

  (2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元。

  a、3 b、4 c、5 d、无法确定

  3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

  六、作业(6分)

  完成课本练习十二第2、4题。

  板书

  抽屉原理

  物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。

《抽屉原理》教学设计 篇六

  1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  (留给学生思考的空间,师巡视了解各种情况)

  2.学生汇报。

  生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

  板书:5本2个2本……余1本(总有一个抽屉里至有3本书)

  7本2个3本……余1本(总有一个抽屉里至有4本书)

  9本2个4本……余1本(总有一个抽屉里至有5本书)

  师:2本、3本、4本是怎么得到的?生答完成除法算式。

  5÷2=2本……1本(商加1)

  7÷2=3本……1本(商加1)

  9÷2=4本……1本(商加1)

  师:观察板书你能发现什么?

  生1:“总有一个抽屉里的至少有2本”只要用“商+ 1”就可以得到。

  师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。

  生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

  师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

  交流、说理活动:

  生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

  生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。

  生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。

  师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

  生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

  师:同学们同意吧?

  师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

  3.解决问题。71页第3题。(独立完成,交流反馈)

  小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

  【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。

《抽屉原理》教学设计【实用6篇】

手机扫码分享

Top