《分数除以分数》教学设计(优质6篇)

时间:2013-06-01 05:20:12
染雾
分享
WORD下载 PDF下载 投诉

《分数除以分数》教学设计 篇一

在学习分数运算的过程中,学生经常会遇到分数除以分数的情况。这个概念对于一些学生来说可能比较抽象,因此在教学中需要设计一些有效的方法来帮助他们理解和掌握这一概念。

首先,在介绍分数除以分数的概念时,可以通过具体的例子来引导学生理解。例如,可以给学生展示一个简单的分数除法算式,比如1/2 ÷ 1/4,然后通过图形或实际物品来让学生感受这个概念。让学生将1/2表示成两个相等的部分,然后再将1/4表示成四个相等的部分,这样学生就能够直观地理解除法的意义。

其次,可以通过实际问题来引导学生进行分数除法的计算。例如,可以给学生提供一些关于食物分配或者时间分配的实际问题,让他们通过计算来解决问题。这样不仅可以帮助学生将抽象的概念应用到生活中,还可以提高他们的解决问题的能力。

另外,可以通过游戏的形式来巩固学生对分数除法的理解。设计一些有趣的游戏,让学生在游戏中进行分数除法的练习,这样不仅可以增加学生的学习兴趣,还可以培养他们的合作能力和思维能力。

最后,在教学设计中也要注意巩固和拓展学生的知识。可以设计一些综合性的练习题,让学生在练习中巩固所学知识,同时也可以拓展他们的思维,提高他们的计算能力。

通过以上的教学设计,可以帮助学生更好地理解和掌握分数除以分数的概念,提高他们的数学运算能力,同时也可以增加他们对数学的兴趣和信心。

《分数除以分数》教学设计 篇二

在教学《分数除以分数》时,我们需要结合学生的实际情况和学习特点,设计一些生动有趣的教学活动,以提高学生的学习兴趣和学习效果。

首先,可以通过实物教学的方式帮助学生理解分数除以分数的概念。可以准备一些小方块或者小球,让学生通过将这些实物分成不同的部分来理解分数的概念,然后再通过实物的分配和合并来进行分数的除法运算,这样可以帮助学生直观地理解分数除法的意义。

其次,可以设计一些趣味性强的游戏来巩固学生对分数除法的理解。例如,可以设计一个“分数除法接力赛”游戏,让学生分成若干小组,每个小组依次进行分数除法运算,并比赛谁先完成,这样不仅可以增加学生的学习兴趣,还可以培养他们的团队合作精神。

另外,可以通过实际问题来引导学生进行分数除法的计算。可以设计一些与学生生活相关的实际问题,让学生通过计算来解决问题,这样可以帮助学生将抽象的概念应用到实际生活中,提高他们的解决问题的能力。

最后,在教学设计中还要注意激发学生的学习兴趣和自信心。可以鼓励学生多多尝试、多多思考,提高他们的学习积极性,同时也可以通过表扬和奖励来增强学生的学习信心,让他们更加积极地参与到学习中来。

通过以上的教学设计,可以帮助学生更好地理解和掌握分数除以分数的概念,提高他们的数学运算能力和解决问题的能力,同时也可以增加他们对数学的兴趣和信心。

《分数除以分数》教学设计 篇三

  教学内容:

  苏教版国标本第十一册第58页例4,练习十一第9~14题。

  教学目标:

  1、使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的式题。

  2、使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

  3、培养学生迁移,概括的能力。

  教学重点:

  理解分数除以分数的计算方法。

  教学难点:

  理解分数除以分数的计算方法,能正确地进行计算。

  教学方法:

  自主探究与讨论归纳相结合。

  教学过程:

  一、复习引入 承前启后

  1、量杯里有 12 升果汁,平均分给4个小朋友。每个小朋友分得多少升?

  师:你认为用什么方法解答?

  生:除法。

  师:怎样列式?

  生:12 ÷4

  师:为什么?

  生:因为是平均分,所以用除法。

  2、量杯里有9升果汁,茶杯的容量是 310 升。这个量杯里的果汁能倒满几个茶杯?

  师:你认为用什么方法解答?

  生:除法。

  师:怎样列式?

  生:9÷310

  师:为什么?

  生:因为是包含分,所以用除法。

  3、12 ÷4 9÷310

  师:说一说分数除以整数和整数除以分数的计算方法?

  生:分数除以整数等于乘整数的倒数。

  生:整数除以分数等于乘分数的倒数。

  师 :这两种除法的计算方法好象有一种共同点,大家看出来了吗?

  生:都是化除为乘,用被除数乘除数的倒数。

  4、揭示课题:

  师:如果是分数除以分数呢?我们今天就来研究这一问题。(板书:分数除以分数)

  二、创设情境 自主探究

  1、出示例4:量杯里有910 升果汁,茶杯的容量是310 升。这个量杯里的果汁能倒满几个茶杯?(投影或挂图出示)

  师:请同学们估计一下,能倒满几个茶杯?

  生:估计3个。

  师:你是根据分数除以整数和整数除以分数的计算方法来推算的吧,但我们还不知道这种方法是否适用于分数除以分数。

  2、学生小组讨论:

  师:请大家根据讨论题进行讨论。

  生:开始讨论:

  (1)、这道题其实是求( ),用( )法计算。

  (2)、分数除以分数也可以用被除数乘除数的倒数来算吗?试一试。

  (3)、再在图中分一分,看看结果相同吗?

  3、师生逐题点评:

  生:这道题其实是求910 里面有几个310 ,用 除法法计算。

  生:可以,列式:(910 ÷310 =910 ×103 =3)(板书)

  生: 可以把图上平均分分成3份,也就是3瓶。

  4、深化方法 加强理解。

  生:现在我们已经学会了分数除以整数、整数除以分数和分数除以分数的计算方法,请大家看一看,这三种计算方法是否有一定联系呢?

  生:分数除以分数等于分数乘分数的倒数。

  生:三种类型的共同计算方法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  三、练习巩固 掌握算法

  1、反馈练习:完成第58页练一练第1题

  第1题:先在长方形中涂色表示3/5,看看3/5里有几个1/5,有几个3/10?再计算。

  师:你发现了什么?如果没有图形,我相信我们都能独立计算的,是不是?

  第2题:巩固计算方法,全班一起练,点评时请学生到黑板上板演。集体点评总结方法。

  师:怎样才能做得又对又快?

  生:要掌握计算方法,计算时注意“变”和“不变”。

  师:哪些“变”与“不变”?

  生:被除数不变,乘号和成除号,除数变成它的倒数。

  师:能约分的一定要约分。

  2、补充练习:连线题。

  3、完成练习十一第12题。在○里填上“>”“<”“=”。

  4、综合练习。

  (1)、一堆煤有 56 吨,每天用去 512 吨,几天用完?

  (2)、一堆煤有 56 吨,第一天用去 512 吨,还剩几吨?

  学生解答后点评

  师:为什么两道题看似差不多,列式为啥不一样?

  生:第(1)题是求一个数里面有另一个数,用除法。

  生:第(2)题是求剩余的数,用减法。

  生:我们要注意审题。

  四、 质疑总结 (略)

《分数除以分数》教学设计 篇四

  本课是在学习了分数除以整数和整数除以分数的基础上进行的,学生已经初步感受到一个数除以另一个数时要变除为乘,去乘除数的倒数。本课则是进一步丰富分数除法的内涵,扩展到分数除以分数,并由此统一分数除法的法则。教材意图让学生利用知识的迁移得出分数除以分数的计算方法,并用一些直观的手段来验证此思路是正确的。练习中,还安排了一些旨在探讨分数除法中的规律(当除数大于1、小于1或等于1时,商相应地小于、大于或等于被除数)的内容。

  教学目标:

  1、理解分数除以分数计算法则的推导过程,掌握分数除以分数的计算方法。

  2、在此基础上归纳出分数除法统一的运算法则。

  3、教学过程中鼓励学生自觉运用化归的数学思想方法解决新问题。

  教学过程:

  一、复习引入,承前启后。

  1、 口算。

  6 9(算完指名说一说分数除以整数和整数除以分数的计算方法)

  (板书:分数除以整数整数除以分数)

  2、 师:这两种除法的计算方法好象有一种共同点,大家看出来了吗?(学生交流)

  3、 师:对,都是化除为乘,用被除数乘除数的倒数。可如果是分数除以分数呢?

  (板书:分数除以分数 )我们今天就来研究这一问题。

  【设计意图:迅速唤醒学生的旧知,为知识的迁移创造一种条件。】

  二、创设情境,推导算法。

  1、出示例4:量杯里有升果汁,茶杯的容量是升。这个量杯里的果汁能倒满几个茶杯?(投影或挂图出示)

  (1)指名列式:

  (2)师:请同学们估计一下,能倒满几个茶杯?(学生发表意见)

  可能出现的意见:

  A、3杯。(==3)(板书)

  B、凭感觉好象是3杯。

  师:要是有量杯和茶杯就好了,倒一倒就可以知道结果。可现在没有,怎么办呢?能想出一个有说服力的方法吗?

  【设计意图:让学生说出自己的第一感觉,是对学生主动思考的一种鼓励,但又不能只停留在猜测这一层次,要激励学生进一步找寻解决问题的方法,并以此来验证自己的猜测是否科学、合理。】

  (3)学生讨论交流。

  可能出现的方法:

  A、化成整数计算。

  升=900毫升 升=300毫升 900毫升300毫升=3,所以,=3

  B、利用分数单位。

《分数除以分数》教学设计 篇五

  一、教学目标

  (一)知识与技能 通过具体的问题情境,探索并理解一个数除以分数的计算方法,能正确地进行计算。

  (二)过程与方法 借助直观,经历一个数除以分数的计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。

  (三)情感态度和价值观

  在数学学习过程中培养分析能力、知识的迁移能力、推理能力。

  二、教学重难点

  教学重点:探究并得出的一个数除以分数的计算方法。

  教学难点:对一个数除以分数的算理的理解。

  三、教学准备

  多媒体课件。四、教学过程

  (一)复习铺垫,温故旧知

  1.计算。

  2.说说下面的数量关系。

  小何3小时走了9千米,平均每小时走多少千米?

  3.填空。

  小时有()个小时;1小时里有( )个小时。

  (二)创设情境,提出问题

  教学教材第31页例2。 小明小时走了2 km,小红小时走了 km。谁走得快些?

  教师:题中有哪些信息?“谁走得快些?”实际上就是比较什么?你能根据题意列出算式吗?

  预设:学生能叙述题中告知的信息是小明和小红各自行走的时间和对应的路程。借助前面的教学环节中对数量关系的描述,能理解“谁走得快些?”实际上是比较谁的速度快,速度=路程÷时间,由此根据题意分别列出算式

  (三)引导“转化”,探究新知 。

  教师:上一节课我们已经学会了分数除以整数的计算方法,

  现在你能试着把转化成除数是整数的除法并加以计算吗?

  预设:

  1.要想把除数变成整数而商不变,根据商不变性质,可得xx(km)。

  2.同样根据商不变性质,但除数可以化成1,即xx(km)。

  (四)数形结合,探明算理

  教师:看来同学们对自己的计算方法都非常自信,那么教材中是怎样推导计算方法的呢?让我们一起来看一看。

  1.阅读理解线段图。

  教师:线段图中1小段表示什么?3小段又表示什么?(借助直观图,启发学生:1小时里面有3个小时。)

  教师:求1小时走了几千米(即3小段),应该先求什么?

  (借助直观,启发:应该先求1小段走了多少千米。)

  2.阅读理解算式。

  结合对话框,引导学生理解(km)。 教师:表示什么?又表示什么?

  (启发:要求1小时行了多少千米,

  要先求出小时行了多少千米,然后再求出3个小时行的路程。)

  (五)强调“转化”,统一算法

  1.对比交流,寻找规律。

  教师:从例1中的

  么? 与例2中的中,你发现了什

  预设:通过对比,学生能得出:分数除法都可以转化为乘法计算。方法是:除以一个数等于乘这个数的倒数。

  教师:例1和例2的计算过程有什么共同之处?

  预设:学生通过观察,不难得出:不管哪种情况,都可以归结为“乘除数的倒数”来计算。

  教师:小红1

  小时能走多少千米?即

  计算吗?试一试。 该怎样计算?你能用刚才得出的方法

  教师:看看教材中是怎样计算的?为什么可以直接写成“

  2.课堂小结,归纳算法。 ”?

  教师:通过例1和例2的'计算,你能用一句话来概括分数除法的计算方法吗?(学生交流。)

  教师:再看看教材中是怎样总结的,和你有什么不同吗?

  预设:学生可以初步得出分数除法的计算方法:除以一个数,等于乘这个数的

《分数除以分数》教学设计 篇六

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第46页例4、练一练,第48页练习七第9~14题。

  教学目标:

  使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分

  数除以分数的试题:

  使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

  教学重点:

  分数除以分数的计算方法。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习引新

  1.口算。

  2.揭示课题:分数除以分数

  二、教学例4

  1.出示例4,学生读题,列式。

  提问:这是已知什么,要求什么?用什么方法计算?

  追问:为什么用除法计算?怎样列式?

  2.引导探索:分数除以整数怎么算呢?

  (1)请大家画图探索一下这个算式得多少?

  各自在书上的长方形里分一分,画一画。

  (2)指名到黑板上画一画,使大家清楚地看出是3瓶。

  (3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?

  请大家计算一下它的积,看得数与我们画图的结果是不是一样?(一样)

  得数相同,你能猜想到什么?

  3.练习,验证猜想

  完成练一练第1题:先再长方形中涂色表示,看看里有几个,有几个,再计算。

  你发现了什么?

  4.概括方法

  联系前面学习的分数除以整数和整数除以分数的计算,你能说出分数除以分数的计算方法吗?

  根据学生的讨论,板书:

  三、练习

  1.做“练一练”第1题。

  各自练习,并指名板演,练习后评议交流。

  2.完成练习七第10题。

  独立计算后,引导比较,启发思考:什么情况下,除得商比被除数小?什么情况下,除得的商比被除数大?

  3.讨论练习七第11题。

  引导:你能不计算,运用已经发现的规律直接填空吗?

  4.讨论练习七第12题:

  指出:交换被除数和除数,所得的商与原来的商互为倒数。

  四、作业:

  练习七第9、13、14题。

《分数除以分数》教学设计(优质6篇)

手机扫码分享

Top