正比例的意义教学设计

时间:2019-01-03 07:50:20
染雾
分享
WORD下载 PDF下载 投诉

正比例的意义教学设计

正比例的意义教学设计

北师大教材第18~20页

随风

教学目标:

1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学关键:

理解成正比例的两个量的意义。

教学过程:

一、复习准备:

口答

1、已知路程和时间,怎样求速度?

2、已知总价和数量,怎样求单价?

3、已知工作总量和工作时间,怎样求工作效率?

二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

课件出示:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考讨论。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

特点是:

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的。

4、正方形的面积与边长的比是边长,是一个不确定的值。

学生在小组内练说发现的规律,初步感知正比例的判定。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

3、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

4、正比例关系:观察思考成正比例的量有什么特征?

小结:

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

(2)字母表达关系式。

如果字母y和x分别表示两种相关联的量,用k表示它们的`比值,正比例关系怎样用字母表示出来?=k(一定)

(3)质疑。

师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

三、巩固练习

(一)想一想:请生用自

己的语言说一说。与同桌交流,再集体汇报

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

2、根据小明和爸爸的年龄变化情况

把表填写完整。父子的年龄成正比例吗?为什么?

(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

1、判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

4、画一画,你会有新的发现。

彩带每米4元,购买2米、3米…彩带分别需要多少钱?

①填一填:(长度:米,价格:元)

②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

板书:正比例的意义

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的

路程÷时间=速度(一定)总价÷数量=单价(一定)

=k(一定)

正比例的意义教学设计

手机扫码分享

Top