高中数学说课稿 篇一
标题:应用题教学中的数学思维培养
引言:
数学是一门非常重要的学科,它不仅仅是为了考试而学习,更是培养学生逻辑思维和问题解决能力的一种工具。在高中数学教学中,应用题是培养学生数学思维的重要途径之一。本次课堂中,我将以应用题为主线,通过引导学生分析问题、建立数学模型、解决实际问题等环节,培养学生的数学思维。
一、引导学生分析问题
1. 引入问题背景:假设有一块长方形的土地,其中有一条河流将其分割成两个部分,请问如何划分这块土地,使得两个部分的总面积最大?
2. 进行问题分析:通过提问引导学生思考,例如:我们应该如何划分土地?划分的方式有哪些?如何确定划分的位置?
3. 总结学生的思考:激发学生的思维,引导他们思考不同的划分方式以及可能的结果。
二、建立数学模型
1. 引导学生确定变量:让学生确定一个或多个变量,例如:设河流的位置为x(0 2. 建立数学关系:通过问题分析,引导学生建立数学关系,例如:两个部分的面积之和为长方形的面积,即A1 + A2 = 长方形的面积。 三、解决实际问题 1. 分析数学关系:将数学关系转化为方程,例如:A1 + A2 = 100(假设长方形的面积为100平方单位)。 2. 解方程:引导学生解方程,求得A1和A2的具体值。 3. 分析结果:对得到的结果进行分析,例如:当x=50时,两个部分的面积相等,即A1 = A2 = 50。 四、拓展思考 1. 引导学生思考:通过提问引导学生思考,例如:如果长方形的面积为200平方单位,最大面积是多少?如果河流的位置不限制在长方形的中间,最大面积是多少? 2. 激发学生思维:引导学生进行拓展思考,思考更复杂的问题,并尝试解决。 结语: 通过本节课的教学,学生们不仅仅学会了解决具体的应用题,更重要的是培养了他们的数学思维。通过分析问题、建立数学模型和解决实际问题的过程,学生们不仅仅掌握了数学知识,更重要的是培养了他们的逻辑思维和问题解决能力。希望学生们能够在今后的学习中继续运用数学思维,解决更多的实际问题。 标题:数学建模在高中数学教学中的应用 引言: 数学建模是近年来兴起的一种教学方法,它通过将数学与实际问题相结合,培养学生的数学思维和解决问题的能力。在高中数学教学中,数学建模的应用有助于提高学生的数学学习兴趣和能力。本次课堂中,我将以数学建模为主线,通过引导学生分析问题、建立数学模型、解决实际问题等环节,培养学生的数学思维和问题解决能力。 一、引导学生分析问题 1. 引入问题背景:假设有一座高楼,楼顶有一个水箱,水箱的容量是多少? 2. 进行问题分析:通过提问引导学生思考,例如:我们应该如何确定水箱的容量?需要考虑哪些因素?如何建立数学模型? 二、建立数学模型 1. 引导学生确定变量:让学生确定一个或多个变量,例如:设水箱的容量为V。 2. 建立数学关系:通过问题分析,引导学生建立数学关系,例如:水箱的容量与高楼的楼层数、楼层高度以及水箱的形状等因素相关。 三、解决实际问题 1. 分析数学关系:将数学关系转化为方程或不等式,例如:V = f(楼层数, 楼层高度, 水箱形状)。 2. 解方程或不等式:引导学生解方程或不等式,得到水箱的容量V的具体值。 3. 分析结果:对得到的结果进行分析,例如:当楼层数为10层,楼层高度为3米,水箱呈长方体形状时,水箱的容量为60立方米。 四、拓展思考 1. 引导学生思考:通过提问引导学生思考,例如:如果楼层数增加到20层,水箱的容量会有什么变化?如果水箱的形状改变,容量会受到什么影响? 2. 激发学生思维:引导学生进行拓展思考,思考更复杂的问题,并尝试解决。 结语: 通过本节课的教学,学生们不仅仅学会了解决具体的数学建模问题,更重要的是培养了他们的数学思维和解决问题的能力。通过分析问题、建立数学模型和解决实际问题的过程,学生们不仅仅掌握了数学知识,更重要的是培养了他们的逻辑思维和问题解决能力。希望学生们能够在今后的学习中继续运用数学建模方法,解决更多的实际问题。 一、说教材: 1、地位、作用和特点: 《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。 本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以 是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是; 特点之二是: 。 教学目标: 根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标: (1)知识目标:A、B、C (2)能力目标:A、B、C (3)德育目标:A、B 教学的重点和难点: (1)教学重点: (2)教学难点: 二、说教法: 基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序: 导入新课 新课教学 反馈发展 三、说学法: 学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。 1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。 本节教师通过列举具体事例来进行分析,归纳出 ,并依 据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。 2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过 演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。 3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。 4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。 四、教学过程: (一)、课题引入: 教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。 (二)、新课教学: 1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。 2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。 (三)、实施反馈: 1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。 2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。 五、板书设计: 在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。 六、说课综述: 以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对 的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。 总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。 一、教材分析: 1.教材所处的地位和作用: 本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。 2.教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: 知识与能力: (1)了解柱体、锥体、台体的表面积. (2)能用公式求柱体、锥体、台体的表面积。 (3)培养学生空间想象能力和思维能力 过程与方法: 让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。 情感、态度与价值观: 通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。 3.重点,难点以及确定依据: 本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点 教学重点:柱,锥,台的表面积公式的推导 教学难点:柱,锥,台展开图与空间几何体的转化 二、教法分析 1.教学手段: 如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。 2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的'潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 三.学情分析 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。 (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散 (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力 最后我来具体谈谈这一堂课的教学过程: 四、教学过程分析 (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性 (2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。 (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。 (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。 (5)例题及练习,见学案。 (6)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高, (7)小结。让学生总结本节课的收获。老师适时总结归纳。 一、地位作用 数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。 基于此,设计本节的数学思路上: 利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。 二、教学目标 知识目标:1)理解等比数列的概念 2)掌握等比数列的通项公式 3)并能用公式解决一些实际问题 能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。 三、教学重点 1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点 2)等比数列的通项公式的推导及应用 四、教学难点 “等比”的理解及利用通项公式解决一些问题。 五、教学过程设计 (一)预习自学环节。(8分钟) 首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。 回答下列问题 1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。 2)观察以下几个数列,回答下面问题: 1, , , ,…… -1,-2,-4,-8…… 1,2,-4,8…… -1,-1,-1,-1,…… 1,0,1,0…… ①有哪几个是等比数列?若是公比是什么? ②公比q为什么不能等于零?首项能为零吗? ③公比q=1时是什么数列? ④q>0时数列递增吗?q<0时递减吗? 3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导? 4)等比数列通项公式与函数关系怎样? (二)归纳主导与总结环节(15分钟) 这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。 通过回答问题(1)(2)给出等比数列的定义并强调以下几点:①定义关键字“第二项起”“常数”; ②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。 ④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。 通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。 法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。 法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。 一、教学目标 (一)知识与技能 1、进一步熟练掌握求动点轨迹方程的基本方法。 2、体会数学实验的直观性、有效性,提高几何画板的操作能力。 (二)过程与方法 1、培养学生观察能力、抽象概括能力及创新能力。 2、体会感性到理性、形象到抽象的思维过程。 3、强化类比、联想的方法,领会方程、数形结合等思想。 (三)情感态度价值观 1、感受动点轨迹的动态美、和谐美、对称美。 2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。 二、教学重点与难点 教学重点:运用类比、联想的方法探究不同条件下的轨迹。 教学难点:图形、文字、符号三种语言之间的过渡。 三、、教学方法和手段 教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。 教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。 教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。 四、教学过程 1、创设情景,引入课题 生活中我们四处可见轨迹曲线的影子。 演示:这是美丽的城市夜景图。 演示:许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多。 演示建筑中也有许多美丽的轨迹曲线。 设计意图:让学生感受数学就在我们身边,感受轨迹,曲线的动态美、和谐美、对称美,激发学习兴趣。 2、激发情感,引导探索 靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1。高中数学说课稿 篇二
高中数学说课稿 篇三
高中数学说课稿 篇四
高中数学说课稿 篇五
高中数学说课稿 篇六