百分数的知识点总结【优选5篇】

时间:2012-05-06 01:47:47
染雾
分享
WORD下载 PDF下载 投诉

百分数的知识点总结 篇一

百分数是我们日常生活中经常用到的一种表示方式,它可以将一个数值以百分比的形式展示出来。在数学中,百分数是一个十分重要的概念,掌握了百分数的知识点,不仅能够更好地理解数学问题,还能够在生活中运用百分数进行数据的分析和比较。本文将从几个方面总结百分数的基本知识点。

首先,我们来了解一下百分数的定义。百分数是指以百分之一作为单位的数,它可以表示一个数值相对于整体的部分。例如,当我们说某个班级有80%的学生参加了比赛,就是指参加比赛的学生人数占整个班级总人数的百分之八十。

其次,百分数与分数和小数的转换是百分数的基本运用。我们经常会遇到将分数或小数转换为百分数,或者将百分数转换为分数或小数的情况。为了将一个分数转换为百分数,我们可以将分数的分子除以分母,再乘以一百。例如,将1/4转换为百分数,我们可以计算1/4乘以100,得到25%。同样地,将一个小数转换为百分数,我们可以将小数乘以100,得到百分数的值。例如,将0.75转换为百分数,我们可以计算0.75乘以100,得到75%。

此外,百分数的运算也是我们需要掌握的知识点之一。在百分数的运算中,常见的有百分数的加减、乘除运算。当我们需要对百分数进行加减运算时,可以将百分数转换为小数进行计算,最后再将结果转换为百分数。例如,将25%加上15%,我们可以先将25%转换为小数0.25,15%转换为小数0.15,然后进行小数的加法运算,最后将结果0.40转换为百分数40%。而在百分数的乘除运算中,我们可以直接对百分数进行乘除运算。例如,将50%乘以2,我们可以直接计算50%乘以2等于100%或者1。

最后,我们还需要掌握百分数在实际问题中的应用。百分数在生活中有着广泛的应用,例如在统计数据中,常常会用到百分数来表示比例或比率。在商业中,百分数也常常用于描述销售增长率、利润率等指标。在投资中,百分数可以用来表示收益率和回报率。因此,掌握百分数的应用,可以帮助我们更好地理解和分析各类问题。

综上所述,百分数是一个重要的数学概念,掌握了百分数的定义、转换、运算和应用,可以帮助我们更好地理解和运用数学知识。通过对百分数的学习,我们不仅可以提高数学水平,还可以在生活中更好地理解和分析各类数据。

百分数的知识点总结 篇三

  1、意义:表示一个数是另一个数的百分之几。(千分数:表示一个数是另一个数的千分之几)

  2、百分数和分数的区别:

  ①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

  分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

  ②、百分数的分子可以是整数,也可以是小数;

  分数的分子不能是小数,只能是除0以外的自然数。

  3、百分数与小数的互化:

  (1)小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

  (2) 百分数化成小数:把小数点向左移动两位,同时去掉百分号

  4、百分数的和分数的互化

  (1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分

  (2)分数化成百分数:

  ① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

  ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  5、用百分数解决问题

  (一)一般应用题

  2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

  数量关系式和分数乘法解决问题中的关系式相同:

  (1)分率前是“的”:单位“1”的量×分率=分率对应量 10的10%是多少

  (2)分率前是“多或少” :单位“1”的量×(1+—分率)=分率对应量 比10多(少)10%

  3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

  解法:(建议:最好用方程解答)

  (1)方程:根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

  4、求一个数比另一个数多(少)百分之几的问题:

  两个数的相差量÷单位“1”的量 × 100% 或: 求多百分之几:(大数÷小数 – 1) × 100%② 求少百分之几:( 1 - 小数÷大数)× 100%

  (二)、折扣

  1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。

  几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五=0.65=65﹪

  2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%

  (三)、纳税

  1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和

  国防安全等事业。

  3、应纳税额:缴纳的税款叫做应纳税额。

  4、税率:应纳税额与各种收入的比率叫做税率。

  5、应纳税额的计算方法:应纳税额 = 总收入 × 税率

  (四)利息

  1、存款分为活期、整存整取和零存整取等方法。

  2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也

  使得个人用钱更加安全和有计划,还可以增加一些收入。

  3、本金:存入银行的钱叫做本金。

  4、利息:取款时银行多支付的钱叫做利息。

  5、利率:利息与本金的比值叫做利率。

  6、利息的计算公式:利息=本金×利率×时间

  7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:

  税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

  ① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%

  ② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%

  ③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50

  ④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40

  ⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50

  ⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40

  ⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%

  ⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%

  ⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40

  ⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50

  乙比甲少20%,少10,甲是多少?10÷20%=50

  乙比甲少20%,少10,乙是多少?10÷20%-10=40

  乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50

  甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40

  乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50

  甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40

百分数的知识点总结 篇四

  分数与百分数的应用

  基本概念与性质

  分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

  分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  分数单位:把单位“1”平均分成几份,表示这样一份的数。

  百分数:表示一个数是另一个数百分之几的数。

  常用方法:

  ①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

  ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

  ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

  ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

  ⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:

  A、分量发生变化,总量不变。

  B、总量发生变化,但其中有的分量不变。

  C、总量和分量都发生变化,但分量之间的差量不变化。

  ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

  ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

  ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

百分数的知识点总结 篇五

  分数和百分数的应用

  1、分数加减法应用题:

  分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2、分数乘法应用题:

  是指已知一个数,求它的几分之几是多少的应用题。

  特征:已知单位1的量和分率,求与分率所对应的实际数量。

  解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3、分数除法应用题:

  求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。

  解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的'量作比较,谁就作被除数。

  甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

  甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。

  已知一个数的几分之几(或百分之几),求这个数。

  特征:已知一个实际数量和它相对应的分率,求单位1的量。

  解题关键:准确判断单位1的量把单位1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

  4、出勤率

  发芽率=发芽种子数/试验种子数100%

  小麦的出粉率=面粉的重量/小麦的重量100%

  产品的合格率=合格的产品数/产品总数100%

  职工的出勤率=实际出勤人数/应出勤人数100%

  5、工程问题:

  是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。解题关键:把工作总量看作单位1,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

  数量关系式:

  工作总量=工作效率工作时间

  工作效率=工作总量工作时间

  工作时间=工作总量工作效率

  工作总量工作效率和=合作时间

  6、纳税

  纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  缴纳的税款叫应纳税款。

  应纳税额与各种收入的(销售额、营业额、应纳税所得额)的比率叫做税率。

  *利息

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  利息=本金利率时间

百分数的知识点总结【优选5篇】

手机扫码分享

Top