九年级数学全册知识点总结 篇一
在九年级的数学学习中,我们学习了很多重要的知识点,下面我将对这些知识点进行总结和回顾。
首先,我们学习了代数方面的知识。代数是数学的一个重要分支,它研究的是数量和数量之间的关系。在九年级的代数学习中,我们学习了如何解一元一次方程和一元一次不等式,这是代数学习的基础。我们学习了如何运用解方程的方法解决实际问题,比如解决购物、几何、速度等问题。此外,我们还学习了如何化简和展开代数式,以及如何进行因式分解和配方法。这些知识点在解决复杂的计算和问题时非常有用。
其次,我们学习了几何方面的知识。几何是数学的另一个重要分支,它研究的是图形和空间的性质和变换。在九年级的几何学习中,我们学习了平面图形的性质和计算。比如,我们学习了直角三角形、等腰三角形、等边三角形等三角形的性质和计算方法。我们还学习了多边形的性质和计算方法,比如正多边形、正六边形等。此外,我们还学习了圆的性质和计算方法,比如圆的面积和周长的计算。这些几何知识对于解决实际问题和几何证明非常重要。
最后,我们学习了概率和统计方面的知识。概率和统计是数学中的实际应用,它们研究的是事件发生的可能性和数据的收集和分析。在九年级的概率和统计学习中,我们学习了如何计算事件的概率和条件概率,以及如何进行概率的加法和乘法运算。我们还学习了如何进行数据的收集和整理,并进行数据的分析和解读。这些统计和概率的知识对于我们了解和分析实际问题非常有帮助。
总的来说,九年级数学全册的知识点非常丰富和重要。代数、几何、概率和统计是数学学习的核心内容,它们的应用广泛,对于我们解决实际问题和发展数学思维能力非常有帮助。通过对这些知识点的总结和回顾,我们可以更好地掌握和应用这些知识,提升我们的数学水平和能力。
九年级数学全册知识点总结 篇二
九年级数学全册的学习中,我们学习了很多重要的知识点,下面我将对其中的一些知识点进行总结和回顾。
首先,我们学习了分式方程的解法。分式方程是一种特殊的方程,其中包含有分数的形式。我们学习了如何通过化简和消元的方法解决分式方程,以及如何判断分式方程是否有解。在实际问题中,分式方程常常出现在比例和相似性的计算中,因此掌握分式方程的解法对我们解决实际问题非常有帮助。
其次,我们学习了立方根和平方根的计算。立方根和平方根是一种特殊的运算,它们分别表示一个数的立方和平方的倒数。我们学习了如何通过开方的方法计算立方根和平方根,以及如何应用它们解决实际问题。在几何和物理问题中,立方根和平方根的计算经常会出现,因此掌握它们的计算方法对我们解决这些问题非常重要。
最后,我们学习了解析几何的知识。解析几何是代数和几何相结合的一种方法,它通过坐标系和代数式的表示来研究图形和空间的性质。我们学习了如何通过坐标系表示点、直线和曲线,并通过代数式计算它们的性质和关系。在解析几何中,我们还学习了如何计算距离、角度和斜率等重要概念,以及如何应用解析几何解决实际问题。掌握解析几何的知识可以帮助我们更好地理解和分析几何问题。
总的来说,九年级数学全册的知识点非常丰富和重要。分式方程的解法、立方根和平方根的计算以及解析几何的知识是其中的一部分。通过对这些知识点的总结和回顾,我们可以更好地掌握和应用这些知识,提升我们的数学水平和能力。同时,这些知识点也对我们解决实际问题和发展数学思维能力非常有帮助。
九年级数学全册知识点总结 篇三
九年级数学全册知识点总结
总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。那么我们该怎么去写总结呢?以下是小编精心整理的九年级数学全册知识点总结,希望能够帮助到大家。
第一章实数
一、重要概念1.数的分类及概念数系表:
说明:“分类”的原则:1)相称(不重、不漏)2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。
4.相反数:①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1.运算法则(加、减、乘、除、乘方、开方)
2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x,=│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根([a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9.指数
⑴(—幂,乘方运算)
①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)
⑵零指数:=1(a≠0)
负整指数:=1/(a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质:=(m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:①?=;②÷=;③=;④=;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b)=
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C..
九年级数学知识点
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行
9.同位角相等,两直线平行
10.内错角相等,两直线平行
11.同旁内角互补,两直线平行
12.两直线平行,同位角相等
13.两直线平行,内错角相等
14.两直线平行,同旁内角互补
15.定理三角形两边的和大于第三边
16.推论三角形两边的差小于第三边
17.三角形内角和定理三角形三个内角的和等于180°
18.推论1直角三角形的两个锐角互余
19.推论2三角形的一个外角等于和它不相邻的两个内角的和
20.推论3三角形的一个外角大于任何一个和它不相邻的内角
21.全等三角形的对应边、对应角相等
22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25.边边边公理(SSS)有三边对应相等的两个三角形全等
26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27.定理1在角的平分线上的点到这个角的两边的`距离相等
28.定理2到一个角的两边的距离相同的点,在这个角的平分线上
29.角的平分线是到角的两边距离相等的所有点的集合
30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33.推论3等边三角形的各角都相等,并且每一个角都等于60°
34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35.推论1三个角都相等的三角形是等边三角形
36.推论2有一个角等于60°的等腰三角形是等边三角形
37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38.直角三角形斜边上的中线等于斜边上的一半
39.定理线段垂直平分线上的点和这条线段两个端点的距离相等
40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42.定理1关于某条直线对称的两个图形是全等形
43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48.定理四边形的内角和等于360°
49.四边形的外角和等于360°
50.多边形内角和定理n边形的内角的和等于(n-2)×180°
51.推论任意多边的外角和等于360°
什么是质数
质数又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。最小的质数是2。
自然数的意思
自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。