初中数学一元一次方程知识点总结归纳(推荐6篇)

时间:2016-06-06 03:48:35
染雾
分享
WORD下载 PDF下载 投诉

初中数学一元一次方程知识点总结归纳 篇一

一元一次方程是初中数学中的基础知识点,是代数学的重要内容。它是指只含有一个未知数的一次方程,其中未知数的最高次数为1。本文将对初中数学一元一次方程的知识点进行总结归纳,以帮助学生更好地理解和掌握这一知识点。

1. 一元一次方程的定义和基本形式

一元一次方程是指只含有一个未知数的一次方程,可以用形如ax + b = 0的基本形式表示,其中a和b是已知数,a ≠ 0。

2. 一元一次方程的解的概念

一元一次方程的解是指能够使方程成立的未知数的值。解可以是一个实数,也可以是一个无穷集。

3. 一元一次方程的解的求解方法

求解一元一次方程的常用方法有逆运算法、等式性质法和消元法。逆运算法是指通过逆运算将方程转化为等价方程,然后解得未知数的值。等式性质法是指通过运用等式的性质,将方程转化为等价方程,然后解得未知数的值。消元法是指通过消去方程中的某项或某些项,转化为等价方程,然后解得未知数的值。

4. 一元一次方程的解的判定

一元一次方程有且仅有一个解的条件是方程的系数不为0,即a ≠ 0。如果方程的系数都为0,那么方程有无穷解。如果方程的系数都为0且等号两边的常数相等,那么方程有无数解。

5. 一元一次方程的应用

一元一次方程在实际生活中有广泛的应用,常用于解决关于价格、时间、距离等问题。通过建立方程模型,可以将实际问题转化为一元一次方程的求解问题,从而得到问题的解。

初中数学一元一次方程知识点总结归纳 篇二

一元一次方程是初中数学中的基础知识点,是代数学的重要内容。它是指只含有一个未知数的一次方程,其中未知数的最高次数为1。本文将对初中数学一元一次方程的知识点进行总结归纳,以帮助学生更好地理解和掌握这一知识点。

1. 一元一次方程的定义和基本形式

一元一次方程是指只含有一个未知数的一次方程,可以用形如ax + b = 0的基本形式表示,其中a和b是已知数,a ≠ 0。

2. 一元一次方程的解的概念

一元一次方程的解是指能够使方程成立的未知数的值。解可以是一个实数,也可以是一个无穷集。

3. 一元一次方程的解的求解方法

求解一元一次方程的常用方法有逆运算法、等式性质法和消元法。逆运算法是指通过逆运算将方程转化为等价方程,然后解得未知数的值。等式性质法是指通过运用等式的性质,将方程转化为等价方程,然后解得未知数的值。消元法是指通过消去方程中的某项或某些项,转化为等价方程,然后解得未知数的值。

4. 一元一次方程的解的判定

一元一次方程有且仅有一个解的条件是方程的系数不为0,即a ≠ 0。如果方程的系数都为0,那么方程有无穷解。如果方程的系数都为0且等号两边的常数相等,那么方程有无数解。

5. 一元一次方程的应用

一元一次方程在实际生活中有广泛的应用,常用于解决关于价格、时间、距离等问题。通过建立方程模型,可以将实际问题转化为一元一次方程的求解问题,从而得到问题的解。

通过对初中数学一元一次方程的知识点进行总结归纳,我们可以更好地理解并掌握这一知识点。希望本文能够对初中学生的学习有所帮助。

初中数学一元一次方程知识点总结归纳 篇三

  1.一元一次方程:

  只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:

  ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  3.条件:一元一次方程必须同时满足4个条件:

  (1)它是等式;

  (2)分母中不含有未知数;

  (3)未知数最高次项为1;

  (4)含未知数的项的系数不为0.

  4.等式的性质:

  等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

  等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

  等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

  解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

  5.合并同类项

  (1)依据:乘法分配律

  (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

  (3)合并时次数不变,只是系数相加减。

  6.移项

  (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

  (2)依据:等式的性质

  (3)把方程一边某项移到另一边时,一定要变号。

  7.一元一次方程解法的一般步骤:

  使方程左右两边相等的未知数的值叫做方程的解。

  一般解法:

  (1)去分母:在方程两边都乘以各分母的最小公倍数;

  (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

  (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

  (4)合并同类项:把方程化成ax=b(a≠0)的形式;

  (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

  8.同解方程

  如果两个方程的解相同,那么这两个方程叫做同解方程。

  9.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

初中数学一元一次方程知识点总结归纳 篇四

  一元一次方程定义

  通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

  一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的`系数,b是常数,x的次数必须是1。

  即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

  一元一次方程的五个核心问题

  一、什么是等式?1+1=1是等式吗?

  表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

  一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

  等式与代数式不同,等式中含有等号,代数式中不含等号。

  等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

  二、什么是方程,什么是一元一次方程?

  含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

  只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

  凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

  三、等式有什么牛掰的基本性质吗?

  将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

  移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

  去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

  四、等式一定是方程吗?方程一定是等式吗?

  等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

  五、"解方程"与"方程的解"是一回事儿吗?

  方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

初中数学一元一次方程知识点总结归纳 篇五

  一、方程的有关概念

  1.方程:含有未知数的等式就叫做方程.

  2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

  注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

  二、等式的性质

  等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

  等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

  等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移项法则:

  把等式一边的某项变号后移到另一边,叫做移项.

  四、去括号法则

  1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1.去分母(方程两边同乘各分母的最小公倍数)

  2.去括号(按去括号法则和分配律)

  3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4.合并(把方程化成ax=b(a≠0)形式)

  5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

  六、用方程思想解决实际问题的一般步骤

  1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

  2.设:设未知数(可分直接设法,间接设法)

  3.列:根据题意列方程.

  4.解:解出所列方程.

  5.检:检验所求的解是否符合题意.

  6.答:写出答案(有单位要注明答案)

初中数学一元一次方程知识点总结归纳 篇六

  1.等式与等量:用=号连接而成的式子叫等式.注意:等量就能代入!

  2.等式的性质:

  等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

  等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

  3.方程:含未知数的等式,叫方程.

  4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!

  5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

  6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a0).

  8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a0).

  9.一元一次方程解法的一般步骤: 整理方程 去分母 去括号 移项 合并同类项 系数化为1 (检验方程的解).

初中数学一元一次方程知识点总结归纳(推荐6篇)

手机扫码分享

Top