小学数学知识点归纳 篇一
在小学数学的学习过程中,有许多基础的知识点需要掌握。这些知识点不仅是数学学习的基础,也是培养学生逻辑思维和解决问题能力的重要工具。本篇文章将归纳总结小学数学的几个重要知识点。
首先,我们来看一下小学数学中的算术运算。加减乘除是小学数学的基本运算法则,也是解决实际问题的基础。加法是指将两个或多个数相加,得到它们的和;减法是指从一个数中减去另一个数,得到它们的差;乘法是指将两个或多个数相乘,得到它们的积;除法是指将一个数分成若干个相等的部分,得到每一部分的值。在学习算术运算时,还需要掌握一些运算规则,如加法和乘法的交换律、结合律和分配律等。
其次,我们来看一下小学数学中的数的大小比较。数的大小比较是指比较两个或多个数的大小关系。这里需要掌握的知识点包括:数的大小关系的表示方法,如使用大于、小于、等于符号表示;数的大小比较的方法,如比较个位数、比较十位数等;数的大小比较的规律,如两个数相等,则它们的任意倍数也相等。
再次,我们来看一下小学数学中的分数。分数是指一个整体被分成若干等分之后的一部分。在学习分数时,需要掌握的知识点包括:分数的表示方法,如分子和分母的位置和意义;分数的大小比较,如比较分子和分母的大小;分数的运算,如分数的加减乘除等。
最后,我们来看一下小学数学中的几何图形。几何图形是指由点、线、面等构成的图形。在学习几何图形时,需要掌握的知识点包括:几何图形的命名和表示方法,如点、线、面的命名方法;几何图形的性质,如正方形的四条边相等,三角形的三条边之和等于180度等;几何图形的分类,如平行四边形、圆形等。
通过对小学数学的知识点进行归纳总结,我们可以更好地理解和掌握数学的基础知识,为后续的学习打下良好的基础。同时,我们也能够培养学生的逻辑思维和解决问题的能力,提高数学学习的效果。
小学数学知识点归纳 篇二
在小学数学的学习过程中,有许多重要的知识点需要掌握。这些知识点不仅是数学学习的基础,也是培养学生逻辑思维和解决问题能力的重要工具。本篇文章将归纳总结小学数学的几个重要知识点。
首先,我们来看一下小学数学中的有序数。有序数是指将一组数按照从小到大或从大到小的顺序排列。在学习有序数时,需要掌握的知识点包括:有序数的表示方法,如使用大于、小于、等于符号表示;有序数的比较方法,如比较个位数、比较十位数等;有序数的规律,如两个数相等,则它们的任意倍数也相等。
其次,我们来看一下小学数学中的倍数和约数。倍数是指一个数可以被另一个数整除,而约数是指能够整除一个数的数。在学习倍数和约数时,需要掌握的知识点包括:倍数的概念和表示方法,如一个数可以被另一个数整除,则前者是后者的倍数;约数的概念和表示方法,如一个数能够被另一个数整除,则前者是后者的约数;倍数和约数的关系,如一个数的所有约数都是它的倍数。
再次,我们来看一下小学数学中的平方数和平方根。平方数是指一个数的平方,而平方根是指一个数的算术平方根。在学习平方数和平方根时,需要掌握的知识点包括:平方数的概念和表示方法,如一个数的平方等于该数乘以自己;平方根的概念和表示方法,如一个数的算术平方根等于该数的平方;平方数和平方根的关系,如一个数的平方根是它的平方数。
最后,我们来看一下小学数学中的时间和日期。时间和日期是我们日常生活中经常接触到的概念。在学习时间和日期时,需要掌握的知识点包括:时间的表示方法,如小时和分钟的表示;日期的表示方法,如年、月、日的表示;时间和日期的计算,如计算两个时间的差值等。
通过对小学数学的知识点进行归纳总结,我们可以更好地理解和掌握数学的基础知识,为后续的学习打下良好的基础。同时,我们也能够培养学生的逻辑思维和解决问题的能力,提高数学学习的效果。
小学数学知识点归纳 篇三
【时分秒】
1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。
2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。
3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。
5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。
6、公式(每两个相邻的时间单位之间的进率是60):
1时=60分
1分=60秒
7、常用的时间单位:时、分、秒、年、月、日、世纪等。
1世纪=100年
1年=12个月
【分数的初步认识】
1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、比较大小的方法:
①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、分数加减法:
①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。
②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。
5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。
【测量】
1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:
①进率是10:
1米=10分米
1分米=10厘米
1厘米=10毫米
②进率是100:
1米=100厘米
1分米=100毫米
③进率是1000:
1千米=1000米
1公里==1000米
5、当我们表示物体有多重时,通常要用到质量单位。在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。
6、相邻两个质量单位的进率是1000。
1吨=1000千克
1千克=1000克
【万以内的加法和减法】
1、读数和写数:
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续两个0,都只读一个0。
2、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。
3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。
4、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。
【倍的认识】
1、倍的`意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。
3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。
【长方形和正方形】
1、有4条直的边和4个角封闭的图形叫做四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等;
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2=长×2+宽×2
长方形的长=周长÷2—宽
长方形的宽=周长÷2—长
正方形的周长=边长×4
正方形的边长=周长÷4
【多位数乘一位数】
1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。
2、
①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
3、三位数乘一位数,积有可能是三位数,也有可能是四位数。
4、多位数乘一位数(进位)的笔算方法:
相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
5、一个因数中间有0的乘法:
①0和任何数相乘都得0;
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。
8、减法的验算方法:
①用被减数减去差,看结果是不是等于减数;
②用差加减数,看结果是不是等于被减数。
9、加法的验算方法:
①交换两个加数的位置再算一遍;
②用和减一个加数,看结果是不是等于另一个加数。
学习困难的原因
1、学习自觉性较差
初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。
2、学习意志薄弱
数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。
3、无兴趣学习或兴趣低
一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。
4、没有养成良好的数学学习习惯
有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。
所以同学们要注意自己是否存在以上问题,要想办法及时解决。
数学的概念
数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。
小学数学知识点归纳 篇四
第一课时:什么是周长
【知识点】:
1、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
2、学生在动手操作中,可以画出并能计算出图形的周长。
第二课时 游园
【知识点】:
1、为学生创设游园的情境,引导学生体验用不同的方法去计算小公园的周长。就是把围成小公园的所有线段加在一起。
2、算一算中出现了4种不同的图形,鼓励学生用多种方法计算,为后面学习长方形、正方形周长的计算作好铺垫。
第三课时 花边有多长
【知识点】:
1、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。
2、在做一做中出现的两个不同的长方形可以让学生用自己喜欢的方法求周长。
第四课时 地砖的周长
【知识点】:
1、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。
2、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。
3、练一练中的第2小题要让学生明确求篱笆长多少米,就是在求正方形实验园地的周长。
第五课时 练习六
【知识点】:
1、练习六中的1——8小题通过计算各种图形的不同周长,进一步巩固学生已经掌握的计算周长的方法。
而第9小题则是让学生发现图形之间的变化关系,从而发现这四幅图形的周长是相等的。
2、在实践活动中,可以让学生先计算三个周长的大小,并说出估计的过程或理由,然后再让学生自主选择测量工具和测量方式。可以独立测量,也可以是小组合作进行,最后组织学生对其估计和测量的结果进行对比,修正自己的估计和测量的结果。
第六课时 交通与数
【知识点】:
在这节实践活动课中,要引导学生认真仔细的观察图片中的数学信息,从而运用周长、乘除法、搭配方法等数学知识和方法来解决实际生活中的简单问题。
小学数学知识点归纳 篇五
主要内容
求一个数比另一个数多(少)百分之几、纳税问题
学习目标
1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。
4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
5、培养和解决简单的实际问题的能力,体会生活中处处有数学。
考点分析
1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入 × 税率
点评:
想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 × 分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。就用“多(少)的量 ÷ 单位1”。
例3、(难点突破)
一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%
分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。一筐苹果比一筐梨重20%,是把梨看作单位“1”,梨有100份,苹果就是100 + 20 = 120份;一筐梨比一筐苹果轻百分之几 = 一筐梨比一筐苹果轻的部分 ÷ 苹果 = (120 - 100)÷ 120≈16.7%
答:一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻16.7%
点评:
在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。”这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。
例4、(考点透视)
一种电子产品,原价每台5000元,现在降低到3000元。降价百分之几?
分析与解:降低到3000元,即现价为3000元,说明降低了2000元。求降价百分之几,就是求降低的价格占原价的百分之几。
5000 – 3000 = 2000(元)
2000 ÷ 5000 = 40%
答:降价40﹪。
例7、
(和应纳税额有关的简单实际问题)
王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?
分析与解:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。
方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)
方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)
答:王叔叔买这辆摩托车一共要花17600元钱。
例8、
扬州某风景区2007年“十一”黄金周接待游客9万人次,门票收入达270
万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%
答:“十一”黄金周期间应缴纳营业税13.5万元。
模拟试题一
一、填空。
1、篮球个数是足球的125%,篮球比足球多( )%,足球个数是篮球的( )%,足球个数比篮球少( )%。
2、排球个数比篮球多18%,排球个数相当于篮球的( )%。
3、足球个数比篮球少20%。排球个数比篮球多18%,( )球个数最多,( )球个数最少。
4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( )%,其余的果树占总棵数的( )%。
5、女生人数占全班的百分之几 = ( )÷ ( )
杨树的棵数比柏树多百分之几 = ( )÷ ( )
实际节约了百分之几 = ( )÷ ( )
比计划超产了百分之几 = ( )÷ ( )
6、20的40%是( ),36的10%是( ),50千克的60%是( )千克,800米的25%是( )米。
7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( )元。
二、解决实际问题
1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?
2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?
3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?
4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?
5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?
6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?
小学数学知识点归纳 篇六
(一)乘除四则运算
1.乘法和除法互为逆运算。
2.在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
3.被除数÷除数=商 除数=被除数÷商 被除数=商×除数
(二)小数四则运算
1. 小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2. 小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3. 小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4. 小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5. 乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
(三)分数四则运算
1. 分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是1的两个数叫做互为倒数。
5. 分数除法:
分数除法的意义与整数除法的意义相同。就是已知两个因数的积 与其中一个因数,求另一个因数的运算。
(四)运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。