初中数学公式总结参考【推荐3篇】

时间:2016-09-05 03:44:45
染雾
分享
WORD下载 PDF下载 投诉

初中数学公式总结参考 篇一

在初中阶段的数学学习中,公式是我们必须掌握和运用的重要工具。掌握了数学公式,我们能更加快速、准确地解决各种数学问题。下面是一些初中数学常用的公式总结参考,希望对同学们的学习有所帮助。

1. 直角三角形的勾股定理

直角三角形的勾股定理是初中数学中最常使用的公式之一。它表达了直角三角形的斜边平方等于两直角边平方和的关系,即a2 + b2 = c2。在解决与直角三角形相关的问题时,可以通过应用勾股定理来求解未知边长或角度。

2. 二次方程求根公式

在初中数学中,我们经常会遇到二次方程的求解问题。二次方程的一般形式为ax2 + bx + c = 0,其中a、b、c为已知数,且a ≠ 0。二次方程的求根公式为x = (-b ± √(b2 - 4ac)) / (2a)。通过这个公式,我们可以求解二次方程的根,从而解决与二次方程相关的问题。

3. 平方差公式

平方差公式是用来求解一些特定形式的乘积的公式。它表达了两个数的平方之差可以分解为两个数的和与差的乘积。平方差公式为a2 - b2 = (a + b)(a - b)。通过应用平方差公式,我们可以化简一些复杂的数学表达式,简化计算过程。

4. 等腰三角形的性质

等腰三角形是指具有两边长度相等的三角形。在初中数学中,我们需要掌握等腰三角形的性质,以便解决与等腰三角形相关的问题。等腰三角形的性质包括底角相等、顶角相等、底边中线与高线重合等。通过应用等腰三角形的性质,我们可以推导出一些重要的结论,如等腰三角形的高线与底边中线等分顶角。

5. 圆的面积和周长公式

在初中数学中,我们学习了圆的相关概念和性质。圆的面积公式为S = πr2,其中S表示圆的面积,r表示圆的半径。圆的周长公式为C = 2πr,其中C表示圆的周长,r表示圆的半径。通过应用这两个公式,我们可以求解与圆相关的问题,如求圆的面积、周长等。

以上是一些初中数学常用的公式总结参考。希望同学们能够掌握这些公式,并能够灵活运用于解决各种数学问题中。记住,数学公式是我们解决问题的有力工具,只有掌握了公式,才能更好地应对数学学习和考试。加油吧,同学们!

初中数学公式总结参考 篇二

数学公式是数学学习中必不可少的工具。在初中阶段,我们需要掌握和运用各种数学公式,以解决各类数学问题。下面是一些初中数学常用的公式总结参考,希望对同学们的学习有所帮助。

1. 两点间距离公式

在平面直角坐标系中,两点间的距离可以通过距离公式来计算。设两点的坐标分别为(x?, y?)和(x?, y?),则两点间的距离为d = √((x? - x?)2 + (y? - y?)2)。通过应用这个公式,我们可以求解两点间的距离,从而解决与距离相关的问题。

2. 平行线之间的关系公式

在初中数学中,我们学习了平行线之间的关系。平行线之间的关系公式有两组:同位角公式和内错角公式。同位角公式表达了同位角之间相等的关系,即对应的同位角相等。内错角公式表达了内错角之间互补的关系,即内错角之和为180°。通过应用这些公式,我们可以推导出平行线之间的一些性质,如同位角与内错角之间的关系等。

3. 三角形的面积公式

在初中数学中,我们学习了三角形的面积计算方法。三角形的面积公式有两个:海伦公式和底边高公式。海伦公式适用于任意三角形,它表达了三角形面积与三边长度之间的关系。设三角形的三边长度分别为a、b、c,半周长为s,则三角形的面积S = √(s(s-a)(s-b)(s-c))。底边高公式适用于底边已知的三角形,它表达了三角形面积与底边长度和高的关系。设三角形的底边长度为b,高为h,则三角形的面积S = 1/2bh。通过应用这些公式,我们可以求解三角形的面积,从而解决与三角形相关的问题。

4. 等差数列的通项公式

在初中数学中,我们学习了等差数列的概念和性质。等差数列的通项公式表达了等差数列中第n项与首项之间的关系。设等差数列的首项为a?,公差为d,第n项为a?,则等差数列的通项公式为a? = a? + (n-1)d。通过应用这个公式,我们可以求解等差数列中的任意一项,从而解决与等差数列相关的问题。

5. 立方和因式公式

在初中数学中,我们学习了立方和因式公式。立方和因式公式表达了一些特定形式的立方和的因式分解。立方和因式公式有两个:立方和公式和立方差公式。立方和公式为a3 + b3 = (a + b)(a2 - ab + b2),立方差公式为a3 - b3 = (a - b)(a2 + ab + b2)。通过应用这些公式,我们可以化简一些复杂的数学表达式,简化计算过程。

以上是一些初中数学常用的公式总结参考。希望同学们能够掌握这些公式,并能够灵活运用于解决各种数学问题中。记住,数学公式是我们解决问题的有力工具,只有掌握了公式,才能更好地应对数学学习和考试。加油吧,同学们!

初中数学公式总结参考 篇三

  三角形的面积=底×高÷2。公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式一、算术方面

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

  3、乘法交换律:两数相乘,交换因数的位置,积不变。

  4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

  5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

  6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

  简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  8、什么叫方程式?答:含有未知数的等式叫方程式。

  9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

  学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。

  17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数

  被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  6、1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  1吨=1000千克1千克=1000克=1公斤=1市斤1公顷=10000平方米。1亩=666。666平方米。1升=1立方分米=1000毫升1毫升=1立方厘米

  7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

  11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y

  12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。15、要学会把小数化成分数和把分数化成小数的化发。16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)17、互质数:公约数只有1的两个数,叫做互质数。

  18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

  20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

  21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

  个位上是0、2、4、6、8的数,都能被2整除,即能用2进行

  约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

  28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

  29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

  30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3。14141432、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3。141592654

  33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3。141592654……34、什么叫代数?代数就是用字母代替数。

  35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=(a+b)*c

  初中数学知识点归纳。

  有理数的加法运算

  同号两数来相加,绝对值加不变号。

  异号相加大减小,大数决定和符号。

  互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。

  有理数的减法运算

  减正等于加负,减负等于加正。有理数的乘法运算符号法则

  同号得正异号负,一项为零积是零。合并同类项

  说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则

  去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程

  已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式

  两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式

  二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式

  首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程

  先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程

  先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法

  和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解

  两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。

  同和异差先平方,还要加上正负号。

  同正则正负就负,异则需添幂符号。因式分解

  一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】一提(提公因式)二套(套公式)

  因式分解

  一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解

  先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例

  两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例

  外项积等内项积,列出方程并解之。求比值

  由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例

  商定变量成正比,积定变量成反比。正比例与反比例

  变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例

  四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例

  四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项

  成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式

  表示方根代数式,都可称其为根式。用平方差公式因式分解

  异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解

  两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域

  求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式

  先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组

  大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。

  幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式

  首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。a正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程

  要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程

  左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程

  已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】恒等式解一元二次方程

  方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别

  判断正比例函数,检验当分两步走。一量表示另一量,有没有。

  若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量,是与否。

  若有还要看取值,全体实数都要有。正比例函数的图象与性质

  正比函数图直线,经过和原点。K正一三负二四,变化趋势记心间。

  K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数

  一次函数图直线,经过点。

  K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数

  反比函数双曲线,经过点。

  直平之间是钝角,平周之间叫优角。

  互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段

  等积或比例线段,多种途径可以证。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数

  二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线直线、射线与线段

  直线射线与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角

  一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程

  一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特殊情况去换元,得解验根是必然。解分式方程

  先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。列方程解应用题

  列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加辅助线

  学习几何体会深,成败也许一线牵。分散条件要集中,常要添加辅助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线段角位置变。已知线段中垂线,连接两端等线段。辅助线必画虚线,便与原图联系看。

  两点间距离公式

  同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。矩形的判定

  任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。菱形的判定

  任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。

[初中数学公式总结参考]

初中数学公式总结参考【推荐3篇】

手机扫码分享

Top