《百分数的应用》教案(实用6篇)

时间:2018-06-07 04:23:35
染雾
分享
WORD下载 PDF下载 投诉

《百分数的应用》教案 篇一

在初中数学教学中,百分数是一个非常重要的知识点。学生们在学习百分数的时候,不仅需要掌握其基本概念和运算规则,还需要学会如何应用百分数解决实际问题。因此,我们需要设计一份富有启发性和实用性的《百分数的应用》教案,帮助学生更好地理解和掌握这一知识点。

首先,我们可以通过引入生活中的例子来引起学生的兴趣。比如,我们可以让学生思考:如果某种商品打七折,那么折扣是多少?这样的问题不仅能够帮助学生理解百分数的概念,还能够让他们在实际生活中灵活运用所学知识。

其次,我们可以设计一些实际应用题目,让学生通过计算和分析来解决问题。比如,我们可以给学生提供一组数据,让他们计算出其中的百分比,并分析这些数据背后的规律。通过这样的练习,学生不仅能够提高计算能力,还能够培养分析和解决问题的能力。

最后,我们可以设计一些拓展性题目,让学生进行思维拓展和创新。比如,我们可以让学生思考:如果某种商品打八五折,那么打折后的价格是原价的多少?这样的问题能够激发学生的思维,让他们在实践中不断提升自己的数学能力。

通过以上的教学设计,我们可以帮助学生更好地理解和掌握百分数的应用,提高他们的数学素养和解决问题的能力。希望我们的教案能够为学生的学习和成长带来帮助,让他们在数学学习中取得更好的成绩。

《百分数的应用》教案 篇二

在学生学习百分数的过程中,教师需要设计一份富有启发性和实用性的教案,帮助学生更好地理解和掌握这一知识点。下面我们来介绍一下如何设计一份好的《百分数的应用》教案。

首先,我们可以通过引入生活中的例子来激发学生的兴趣。比如,我们可以让学生思考:如果某种商品打六折,那么折扣是多少?通过这样的问题,学生能够更好地理解百分数的概念和运算规则。

其次,我们可以设计一些实际应用题目,让学生通过计算和分析来解决问题。比如,我们可以给学生提供一组数据,让他们计算出其中的百分比,并分析数据的变化规律。通过这样的练习,学生能够提高计算能力,培养分析和解决问题的能力。

最后,我们可以设计一些拓展性题目,让学生进行思维拓展和创新。比如,我们可以让学生思考:如果某种商品打九五折,那么打折后的价格是原价的多少?这样的问题能够激发学生的思维,让他们在实践中不断提升自己的数学能力。

通过以上的教学设计,我们可以帮助学生更好地理解和掌握百分数的应用,提高他们的数学素养和解决问题的能力。希望我们的教案能够为学生的学习和成长带来帮助,让他们在数学学习中取得更好的成绩。

《百分数的应用》教案 篇三

  教学内容

  北师大版小学数学第十一册第二单元p41,p42"百分数的应用(四)"

  教学目标

  1,能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。

  2,结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

  教学重,难点

  进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。

  教学过程

  一,准备。

  1,口算。

  20÷10%=120×90%=1—100%=50÷20%=

  40×20%=200×9%=200%+120%=70×5%=

  2,课前布置学生分小组到银行去调查利率并了解有关储蓄的知识(对利率进行板书)。

  3,师小结,引出课题。

  二,探究思考。

  1,出示例题(教科书p41页)咱们就以笑笑的300元为例,如果你有300元钱,打算怎样存款,你是怎么想的

  (1)学生要自己个人的意愿分别存款。(并且进行板书)

  (2)师小结:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢(教师给出计算利息公式:税后利息=本金×年利率×年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)

  师:从去年开始,个人在银行存款所得利息应按5%纳税,这就是利息税。国家将这部分税收用于社会福利事业。

  师:下面大家再算一算300元存一年和三年整存整取各应交多少利息税

  学生写完后汇报:

  师:只有国债和教育储蓄是不需要交利息税的。

  练习:41页试一试1

  三,练习巩固。

  1,小明的爸爸打算把5000元钱存入银行(三年后用)。他如何存取才能得到最多的利息

  2,小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给"希望工程"。如果按年利率2。25%计算,到期后小华可以捐给"希望工程"多少元钱

  3,李老师把2000元钱存入银行,整存整取五年,年利率是3。60%,利息税率为20%。到期后,李老师的本金和利息共有多少元李老师交了多少利息税

  四,课堂总结

  通过今天的学习你有什么收获

《百分数的应用》教案 篇四

  教学内容:

  教科书第1—2页及“做一做”中的题目,练习一的第1、2题。

  教学目的:

  使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

  教具准备:

  将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

  教学过程:

  一、导入

  教师提问:

  “如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

  “为什么要把钱存入银行呢?”多让几个学生发表意见。

  教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

  “你们知道利息是怎样计算的吗?”

  教师:今天我们就来学习一些有关利息的知识。

  板书课题:“利息”

  二、新课

  出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

  先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期—年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

  教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

  存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

  这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

  根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

  按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?提问:

  “二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

  “二年应得利息多少元?”学生口述,教师接着板书:×2

  小丽的存款到期时可以得到的利息是35.64元。

  “想一想,存款的利息应该怎样计算呢?”先让学生说一说,教师再板书:利息=本金×利率×时间

  “小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

  三、巩固练习

  做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

  订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0。1425%,表示什么意思?再引导学生分步说出:280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

  四、作业

  练习一的第1题。

《百分数的应用》教案 篇五

  一.揭示课题

  今天这节课,老师准备与同学们一起应用百分数的知识来解决一些实际问题。(出示课题:百分数的综合应用)

  二.基本练习

  师:老师想向大家了解一些情况,你们愿意吗?

  生:愿意。

  师:你的身高是多少?

  生1:我的身高是1米58。

  生2:我的身高是152厘米。

  生3:我的身高是145厘米。

  师:你的体重是多少千克?

  生1:我的体重是43千克。

  生2:我的体重是38.5千克。

  师:自己的身高和体重都知道,但你知道自己体内大约有多少千克的血液在流动吗?(生茫然并窃窃私语。)

  师:你们称过吗?(生:没有)能称吗?(生:不能)

  师:是呀!称体内的血液这不要了大家的命了(众人笑)。所以老师去查了一些资料,终于找到了一个科学研究的结果。(课件出示:人体中血液的重量约占体重的7%)现在能知道了吗?

  学生根据自己的体重来计算体内的血液重量。

  反馈:

  生:我的体内有4.7千克的血液。

  师:是怎样计算的?

  生:用自己的体重乘以7%。

  师:你们都是这样来算的吗?

  生:是。

  (学生讲述计算过程,教师板书算式。)

  生:我的体重是44千克,所以是44×7%。

  师:对呀!用这样一条简单的百分数知识就可以解决体内血液的重量问题,其实类似的问题在我们身上还可以找到许多,比如说:12岁左右的少年,头高占自己身高的14.28%。(课件同步出示)看到这里,你能知道什么?

  生:能知道自己的头有多高。

  师:你想知道自己的头高吗?(生:想)请算一算吧!(学生计算,师巡回。)

  反馈:

  生:我的身高是155厘米,头高就是155×14、28%=22.134厘米。

  生:我的身高是141厘米,头高就是141×14、28%=20、13厘米

  师:与上面同学的计算结果比较一下,我们的头高都一样吗?为什么?

  生:头高不一样,是因为身高不相同。

  师:老师的头高是21.7厘米,你能帮老师算算身高吗?(课件同步出示)

  (学生计算,师巡回。)

  反馈:

  生:老师的身高是21.7÷14、28%=151厘米。

  师:都一样吗?(生:一样)噢,老师谢谢你们啦!(个别学生开始举手)你想说什么?

  生:不对,这里是12岁左右的少年头高是身高的14.28%,老师是成年人了。

  师:讲得有道理,人在各个不同的生长时期,头高与身高的百分比是不相同的,老师忘了告诉大家了(课件出示人在各个生长时期头高与身高的百分比)。33.3%

  胎儿的头高约占身高的33.3%

  婴儿的的头高约占身高的25%

  12岁左右的少年,头高约占自己身高的14.28%

  成人的头高约占身高的12.5%

  请你选择合适的条件,再为老师算算身高。(学生计算)

  生:老师的身高应该是21.7÷12.5%=173.6厘米。

  师:大家一样吗?(生:一样)这才差不多,虽然第一次计算身高时选择的条件是错误的,但是思考的方法是(生:正确的)。

  :我们用百分数的知识,能解决这些问题,你还知道日常生活中哪些方面也经常用到百分数的知识?

  生:商店打折的折扣。

  生:银行的存款利率。

  生:小麦的发芽率。

  生:产品的合格率。

  三.巩固深化

  师:看样子,百分数的知识作用可不小啊!老师也收集了一些这方面的材料(课件出示)这些问题你们有信心解决吗?(生:能)

  如果在解决过程中碰到困难可以同桌讨论,也可以向老师求援,能用多种方法解决那就更好了。

  (学生练习,巡回指导。)

  反馈讲评:

  (1)某班有男生25人,女生20人,男生人数比女生多百分之几?

  反馈时提问:为什么除以20,而不除以25呢?还有其它方法吗?

  (2)根据会务组统计,本次活动浙江省参加听课的老师约130人,比江西省参加的老师少90%。江西省参加听课的老师有几人?

  反馈时提问:你是怎样思考的?

  (2)小明家刚买了一套新房,向银行贷款40000元,月利率是0.466%,期限一年,到期时应付利息多少元?

  反馈时提问:利息如何算?12从哪里而来?

  (4)如右图,练市到南昌的总路程约是985千米,其中练市到杭州约占总路程的10%,老师坐汽车从练市到杭州用了2小时。

  照这样计算,从练市到南昌要多少小时?

  解法一:985÷(985×10%÷2)=20小时

  你是怎样思考的?

  解法二:2÷10%=20小时

  师:这样简单,你解释一下好吗?

  生:路程是全程的10%,在速度不变的情况下,那么从练市到杭州所用的时间应是全部时间的10%。

  师:从刚才的练习中可以体会到解决这些问题的方法是多种多样的,那么在解决百分数的问题时,你们一般是怎样来思考的呢?

  (学生讨论,同组互说。)

  归纳:一般是先找关键句,确定单位“1”的量,再根据具体情况,进行具体地分析。

  四.综合练习

  1.课件出示:练市小学的基本概况。

  练市小学创办于1920年,已有80多年的历史。创办初期只有13位教师,8个班级,而现在已有25个班,占地8400平方米,其中绿化面积占总面积的20%,学校教师数比创办初期增加了400%,现在在校学生1220人,相当于创办初期的488%。

  师:根据这些情况,你还能知道一些其它的问题吗?

  生:可以知道练市小学现在有多少位教师。

  生:可以知道练市小学的绿化面积是多少。

  生:可以知道练市小学创办初期有多少学生。

  师:请把你最想知道的问题计算出来。

  反馈:

  师:(指着8400×20%=1680平方米)能说一说你算的是什么吗?

  生:我算的是绿化面积有多少平方米。

  师:指着“13×(1+400%)=65(人)”你猜一猜他算的是什么?

  生:他计算的是现在学校教师的人数。

  师:还有其它的吗?

  生:(指着25÷18=312.5%)我算的是练市小学现在的班级数相当于原来的百分之几?

  师:讲的真不错,从这里我们可以看出练市小学在不断地发展,为了给我们同学更好的学习环境,我校正在新建一座现代化的新校。(出示新校设计效果图)

  课件出示:

  有62吨砂子准备运往建校工地,甲乙两人都想承运这批砂子。

  甲说:我有一辆载重10吨的大卡车,每次运费元。如果这些砂子全部由我运,运费可以打九折。

  乙说:我有一辆载重4吨的小卡车,每次运费90元。如果这些砂子全部由我运,运费可以打八五折。

  师:根据这样的情况,请你们设计几种不同的运货,并算出总运费。(同桌合作)

  生:我们决定全部由甲运:总运费是:62÷10≈7次;7××90%=1260元

  生:我们决定全部由乙运:总运费是:62÷4≈16次;90×16×85%=1224元

  生:我们决定由甲乙合运:甲运5次,乙运3次,总运费是:5×+3×90=1270元。

  师:你怎么会想到由甲运5次,乙运3次呢?

  生:这样运可以不运半车的,效率比较高。

  师:上面有三种不同的运货,你们最喜欢哪一种?请说明理由。

  生:我喜欢第二个,运费比较省。

  生:我喜欢第三种,同时合运比较快。

《百分数的应用》教案 篇六

  教学目标:

  1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。

  2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

  3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。

  重点难点:

  理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。

  教具准备:

  课件。

  教学过程:

  活动一:创设情境,引出新知

  1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?

  2、课件出示情境,引导学生观察

  师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

  3、师:根据这两个条件,你能提出什么问题?

  生提问,师选择板书。

  (1)冰的体积是原来水的体积的百分之几?

  (2)原来水的体积是冰的体积的百分之几?

  (3)冰的体积比原来水的体积增加百分之几?

  4、在这些问题中,我们能解决哪些问题?

  你知道冰的体积比原来水的体积增加百分之几吗?下面就让我们一起来学习百分数的应用。(板书课题)

  活动二:理解“增加百分之几”。

  1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?

  2、学生用自己的方式理解“增加百分之几”的意思。

  3、全班汇报,由口头理解的不清晰,引出线段草图。

  4、对比书中的线段图和学生的线段草图,引导学生思考“增加了”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的体积增加了,增加了百分之几指的增加了谁的百分之几?是谁和谁比?

  通得讨论得出:冰的体积比水的体积增加的部分是水的体积的百分之几。

  5、列式计算,数形结合,说出两个列式的含义

  6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。

  可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。

  活动三:理解减少百分之几

  1、把这50立方厘米的冰,再化成45立方厘米的水,水的体积比冰的体积减少百分之几?是11%吗?(板书50立方厘米的冰——45立方厘米的水,水的体积比冰的体积减少百分之几?)

  2、多百分之几和少百分之几是一个数吗?为什么?不是一个数,因为他们对比的量不同,也就是单位一不同

  三、训练巩固

  1、根据问句,说出谁和谁比,谁是单位“1”的量。

  (1)男工人数比女工多百分之几?

  (2)今年每公亩的产量比去年增产百分之几?

  (3)汽车速度比火车速度慢百分之几?

  (4)红花朵数比黄花朵数少百分之几?

  2、消费宝典

  电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)

  (引导学生先理解“降低百分之几”再列式计算。)

  3、建设新农村

  选一选:今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?

  (1)(121-66)÷121

  (2)66÷121

  (3)66÷(121-66)

  (让学生说出选择的依据。)

  四、课堂小结

  通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的.实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。

  板书设计:

  方法一:先求出冰的体积比水的体积增加的数量,再求出增加的部分是水的体积的百分之几。

  50-45=5(㎝3)

  5 ÷45 ≈11%

  方法二:先求出冰的体积是水的体积的百分之几,再把水的体积看作100%,用减法求出增加百分之几。

  50÷45≈111%,

  111%-100%=11%

《百分数的应用》教案(实用6篇)

手机扫码分享

Top