五年级数学教案【优质6篇】

时间:2016-01-02 08:24:20
染雾
分享
WORD下载 PDF下载 投诉

五年级数学教案 篇一

主题:小数的认识与运算

一、教学目标:

1. 能够正确理解小数的概念,掌握小数的读法和写法。

2. 能够进行小数的加减运算,包括整数与小数的运算。

3. 能够应用小数进行实际问题的解决。

二、教学重点与难点:

重点:小数的读写及加减运算。

难点:整数与小数的混合运算。

三、教学准备:

1. 教材:五年级数学教材

2. 工具:小数计算卡片、小数加减运算练习题

四、教学过程:

1. 导入:通过实际物品如水杯、苹果等,让学生感受小数的存在。

2. 概念讲解:介绍小数的定义,读法和写法,让学生举例说明。

3. 计算练习:让学生进行小数的加减运算练习,强化计算能力。

4. 拓展应用:通过生活中的实际问题,引导学生应用小数进行解决。

五、教学反馈:

1. 课堂练习:布置小数加减运算练习题,检验学生的掌握程度。

2. 课后作业:布置相关小数运算题目,巩固学生的知识。

六、教学延伸:

1. 小组讨论:让学生分组进行小数问题的讨论和解答。

2. 数学游戏:设计小数运算的游戏,增加学生的学习兴趣。

七、教学总结:

通过本节课的学习,学生不仅掌握了小数的基本概念和运算方法,还能够在实际问题中灵活应用小数进行解决。

五年级数学教案 篇二

主题:图形的认识与计算

一、教学目标:

1. 能够正确识别并描述几何图形的基本特征。

2. 能够计算图形的周长和面积。

3. 能够应用图形知识解决实际问题。

二、教学重点与难点:

重点:图形的周长和面积计算。

难点:复杂图形的周长和面积计算。

三、教学准备:

1. 教材:五年级数学教材

2. 工具:各种几何图形模型、周长和面积计算题目

四、教学过程:

1. 导入:通过展示不同几何图形,激发学生对图形的兴趣。

2. 概念讲解:介绍图形的周长和面积计算方法,让学生理解公式的含义。

3. 计算练习:让学生进行简单图形的周长和面积计算练习,逐步引入复杂图形。

4. 实际应用:设计与生活相关的图形问题,引导学生思考并解决。

五、教学反馈:

1. 课堂练习:布置周长和面积计算练习题,检验学生的掌握程度。

2. 课后作业:布置相关图形计算题目,巩固学生的知识。

六、教学延伸:

1. 观察实验:引导学生通过测量实验计算图形的周长和面积。

2. 创造设计:让学生设计自己喜欢的图形,并计算其周长和面积。

七、教学总结:

通过本节课的学习,学生不仅掌握了图形的基本特征和计算方法,还能够在实际问题中灵活应用图形知识进行解决。

五年级数学教案 篇三

  教学目标

  1.使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题.

  2.提高学生分析问题,解决问题的能力.

  3.培养中国学习联盟胆尝试,勇于探索的精神.

  教学重点

  1.找到与求路程应用题的内在联系.

  2.正确分析解答求相遇时间的应用题.

  教学难点

  掌握求相遇时间应用题的解题思路.

  教学过程

  一、复习引入

  (一)出示复习题

  小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?

  1.画图,列式解答.

  2.订正答案

  3.小组讨论:试着改编一道求相遇时间应用题.

  二、探究新知

  例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?

  1.讨论:复习题的线段图该怎样改一改.并试着画一画.

  2.联系复习题的解法,尝试解答

  3.订正思路

  想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.

  270÷(50+40).

  想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:

  相遇时间=路程÷速度和.

  三、反馈调节

  两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

  1.学生独立分析解答.

  2.订正答案.

  3.质疑:对于“求相遇时间”应用题还有什么问题?

  4.教师提问

  (1)要求“相遇时间”题目中需告诉我们哪些条件?

  (2)例4与复习题之间有什么联系?又有什么区别?

  四、巩固练习

  (一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?

  (二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?

  教师提问:怎样验证结果是否正确?

  (三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?

  (四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?

  五、课后小结

  我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

  探究活动

  猜两位数

  活动目的

  激发学生学习数学的兴趣.

  活动方法

  表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数.

  例如:观众想的是59,他按规定计算出

  59×167+2500=12353

  表演者根据报的得数计算

  53×3=159

  于是就知道观众想的是59.

  活动过程

  1.教师进行表演

  2.学生探讨其中的奥妙

  3.学生自己设计这样的几个游戏.

  猜数方法

  将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数.

  六、板书设计

五年级数学教案 篇四

  设计说明

  本节课是在学生已有知识经验的基础上,让学生进一步体会数据的整理、描述和分析的过程,认识复式折线统计图。

  1.注重情境创设,产生认知冲突。

  本节课结合学生学过的复式条形统计图和单式折线统计图进行教学。新课伊始,提出问题:如果要在一个统计图上表示出4月7~10日我国南北两地最高气温的变化情况,制作什么统计图比较合适呢?然后引出要学习的内容:复式折线统计图。

  2.重视自主探究,培养学生的动手操作能力。

  动手操作是学生获取知识的一种有效手段,也是《数学课程标准》中提倡的学习方式。本节课通过教师引导,并结合上节课的已有经验,让学生自己动手绘制复式折线统计图,感知复式折线统计图的特点,体会复式折线统计图的作用。

  课前准备

  教师准备

PPT课件

  学生准备

直尺

  教学过程

  第1课时复式折线统计图(1)

  ⊙创设情境,导入新课

  1.你知道中国最南和最北的位置吗?你知道两地的天气情况吗?

  (学生结合课前收集的资料,自由交流)

  2.你还记得折线统计图吗?折线统计图有什么特点?

  3.以表格形式出示4月7~10日我国南北两地最高气温的变化情况。

  提问:如果要在一个统计图上表示出4月7~10日我国南北两地最高气温的变化情况,制作什么统计图比较合适呢?这节课我们就一起来探究复式折线统计图。(板书课题)

  设计意图:通过回顾旧知检验已学知识,为学习复式折线统计图奠定基础。

  ⊙探究新知

  1.认识复式折线统计图。

  (1)猜想复式折线统计图:请大家迁移复式条形统计图的知识想一想,复式折线统计图有哪些特点呢?(学生自由交流)

  (2)读懂复式折线统计图。

  (课件出示教材84页4月7日~10日我国南北两地最高气温的复式折线统计图)

  ①观察、汇报复式折线统计图的组成。

  ②讨论怎样读复式折线统计图。

  小组讨论,得出:读复式折线统计图的方法与读复式条形统计图的方法相同,可以横向观察、纵向观察、对比观察等。

  ③观察复式折线统计图,获取信息。

  (用自己喜欢的方式观察复式折线统计图,并说一说获取了哪些信息)

  设计意图:通过观察、讨论,用知识迁移法来学习新知,使学生了解复式折线统计图,同时加深对前面所学统计知识的理解,从而可以更好地掌握复式折线统计图。

  2.探究复式折线统计图的特点。

  (1)课件出示课前制作的曾母暗沙和漠河县两地xxxx年4月7~10日最高气温的单式折线统计图,引导学生对比单式和复式折线统计图,找出两者之间的异同,填写下表。

  相同点

  不同点

  单式折线

  统计图

  (1)有标题、横轴、纵轴、单位名称。

  (2)确定每一格代表多少单位。

  (3)先描点,再连线,连线要用直尺。

  只有一条折线。

  复式折线

  统计图

  (1)有两条折线。

  (2)有图例。

  (2)小组合作探究复式折线统计图的特点。

  通过对比,你发现复式折线统计图有哪些优势?

  预设

  复式折线统计图不但能表示出两组数据数量的多少、数量增减变化的情况,而且还可以比较两组数据的变化趋势。

  3.读统计图,解决问题。

  (1)两地哪天的最高气温相差最大?相差多少?

  (2)两地最高气温相差25℃的是哪天?

  (3)曾母暗沙的最高气温是如何变化的?漠河呢?

  (4)从总体上看,两地这几天的最高气温之间最明显的差别是什么?

  (学生独立完成后交流汇报)

  设计意图:通过自主探究、合作交流的学习方式,引导学生通过对比单式和复式折线统计图,进一步认识、读懂复式折线统计图,并能够从图中发现问题、提出问题、解决问题,培养学生的应用意识。加深对复式折线统计图的理解。

五年级数学教案 篇五

  教学目标:

  知识与技能:会用量具测量不规则物体的体积。

  过程与方法:通过对不规则物体体积计算方法的探讨,拓展学生的思维。

  情感与态度:促使学生在活动中积极探索,和谐配合,进一步激发学生对周围事物规律的探究。

  教学重点:探索不规则物体体积的测量方法。

  教学难点:知道不规则物体的体积就是排开水的体积。

  教学准备:量杯、水、沙子、橡皮泥、不规则物体(石块、石块)、乒乓球。

  教学过程:

一、导入阶段

  师:大家最近都在求物体的体积。这些物体,我们一起来看一看。(有各类形状的盒子(长方体和正方体),水)。

  师:小胖想问问你们这些物体的体积你们会求吗?怎么求?

  1、长方体和正方体形状的物体,我们会求,先测量出它们的长、宽、高各是多少,然后利用长方体和正方体的体积公式就能计算出来。

  2、a、可以把水倒入长方体容器内,水的长、宽与容器内部的长、宽相等,再测量一下水的高度,根据这三个条件,水的体积就可以求出来了。

  b、把容器内的水倒在量杯内,就能测出水的体积。

  师:那现在有一块石头,那么这块石头的体积怎么求呢?今天,我们就要研究这个问题。

  (出示课题:用量具测体积)

  二、新授

  师:我们首先来观看大屏幕。(视频)

  师:请大家交流一下,你看到了什么?

  生:将石块放入一个装满水的容器内时,容器内的水面高度会上升。

  师:大家再看一下……

  师:大家想一下,为什么将石块放入一个装满水的容器内时,容器内的水面高度会上升?

  师:因为石块本身是有体积的,将石块放入一个装满水的容器内时,原本下面容器内的水就会被石块所“排开”了,这样就导致了容器内的水面高度会上升。

  师:那想一下,如果现在我把这石块从容器内取出的话,容器内水面高度又会发生怎样的变化?

  生:容器内水面高度会下降。

  师:再将石块放入容器内呢?容器内的水面高度又会XXXX?

  师:那你能否来判断一下,容器内的水面高度的上升与下降和石块的体积,两者之间究竟有怎样的联系?(大家小组讨论一下)

  生:水面升高的那部分水的体积就是石块的体积

  师:接下来,大家再来看一段视频,你试试看能否用刚才我们所学的这个知识来计算出罐头的体积?

  实验告诉我们是如何测量罐头的体积?罐头的体积是多少?

  (原来水的体积是200ml,现在把罐头放入量杯全部浸没在水中,水面就升高了,现在的体积是400ml,升高部分水的体积就是200ml,水面升高的那部分水的体积就是罐头的体积。)

  师:通过实验,我们知道:水面升高的那部分水的体积就是罐头的体积

  师:刚才我们交流了很多,谁能简单概括一下测量石块体积的方法?

  1、观察原来水的体积。

  2、放入石块。

  3、观察变化后的体积。

  4、求两个体积的差。

  师:a、现在老师想用你们刚才的方法测量这个石块的体积(将石块放入水中),观察一下,你有什么想说的?(石块没有被浸没)

  师:石块没有被完全浸没,但是水面却升高了,那么石块的体积是否就是水面升高的这部分水的体积?

  (不是,水面升高的这部分水的体积其实是石块浸在水里的这部分的体积,而不是整个石块的体积。)

  师:只有将石块整个都浸在水里面,水面升高那部分的水的体积就是石块的体积。

  师:通过两次实验,我们可以确定:物体排开水的体积就是物体的体积。(板书)

  师:通过刚才一系列的实验讨论,我们得出了这个结论,你们真聪明,有一只乌鸦也非常聪明,相信大家都学过“乌鸦喝水”的故事,我们一起来回顾一下。

  师:请同学们说一说乌鸦为什么会喝到水?

  (把石块投入到杯子中,石块就把水排开了,水面就升高了。石块投的越多,水面升高的越快,当水面升高到杯口时,乌鸦就能喝到水了。)

  师:乌鸦用这种方法喝到了水,非常聪明,希望同学们在生活中,如果遇到困难,也应该多角度,多方位的去思考,找到解决问题的好方法。

  师:接下去请同学们把书翻到67页,独立完成书上的第二题。

  师:谁能说说这幅图你看懂了什么,这个苹果的体积又是多少?

  (原来量杯中水的体积是600ml,把苹果完全浸没在水中后,水面上升到了800ml。

  上升部分水的体积就是苹果的体积:800-600=200ml=200cm3

  师:一起来看第三题,两只形状、大小相同的量杯盛有同样多的水,放入两块形状不同的石头后,如果水面升到一样高,那么这两块石头的体积相同吗?

  (相同,因为两个量杯的形状、大小是相同的,水面上升的又是一样高,虽然它们的形状不同,但是它们的体积是相同的。)

  A

  一个长方体水缸,长是7分米,宽是5分米,水深3分米,把一个钢球浸没在水里,水面上升0。2分米,这个钢球的体积是多少立方分米?(水缸的厚度不计)

  B

  一只长方体的玻璃缸,长6分米,宽4分米,水深5分米,如果将一块体积是14。4立方分米的石块全部放入水中,水面会上升多少分米?

  讨论题:

  有一只长方体水箱,长20分米,宽5分米,水箱里放入一个长方体钢块后,水面上升了0。6分米,已知钢块的长和宽都是4分米,求钢块的高是多少分米?(水箱的厚度不计)

  判断题

  1。把一个铁球沉没在长1。5分米,宽1。2分米的长方体容器里,水面由4。5分米上升到6分米,你能求出这个铁球的体积吗?

  (容器的厚度不计)

  A、

  1.5×1。2×4。5

  B、

  1.5×1.2×6

  C、

  1.5×1.2×(6—4.5)

  D、

  1.5×1.2×(4.5+6)

  2。有一只长方体玻璃水缸,长10分米,宽4分米,水箱里放入一个长方体铜块后,水面上升了0。5分米,已知铜块的长是3分米,高是4分米,求铜块的宽是多少分米?(水缸的厚度不计)

  A、

  10×4÷(3×4)

  B、

  10×4×0.5÷4

  C、

  3×4×0.5÷(10×4)

  D、

  10×4×0.5÷(3×4)

  深化练习:

  从里面量长、宽均为2分米,向容器中倒入4.4升水,再把一个苹果放入水中。这时量得容器内的水深是1.5分米,这个苹果的体积是多少?(玻璃容器的厚度不计)

  H独立练习:

  1、水倒入一个棱长为10厘米的正方体容器内,水高3厘米,然后放入许多小石子,这时水升高到5厘米,求这些小石子的体积。(容器的厚度不计)

  2、一个底面积为16平方分米长方体鱼缸,蓄水深20cm,现将一块小假山完全放入水中,此时水面上升了2cm,求这个小假山的体积。(鱼缸的厚度不计)

  三、小结

  师:通过今天的学习,你有什么收获?

五年级数学教案 篇六

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第32~33页例4和“练一练”,第35~36页练习五第5~7题。

  教学目标:

  1.使学生认识和掌握2和5的倍数的特征,认识偶数和奇数;能判断或写出2和5的倍数,并说明判断理由,能说出偶数或奇数。

  2.使学生经历探索和发现2和5的倍数的特征的过程,培养观察、比较和抽象、概括等思维能力,提高归纳推理的能力,积累数学活动的经验,进一步发展数感。

  3.使学生主动参与探索、发现规律的活动,体验发现规律的喜悦;感受数学充满规律,对数学产生好奇心,增强学习数学的积极情感。

  教学重点:

  认识2和5的倍数的特征。

  教学准备:

  为学生每人准备百数表一张;每人准备o、5、6、7四张数字卡片。

  教学过程:

  一、激活经验

  引导:我们已经认识了因数和倍数,学会了找一个数的因数或倍数的方法。想一想,如果告诉你一个数,比如3,怎样找出它的倍数?请你说一说找倍数的方法。

  在研究一个数的倍数时,人们发现了有一些数的倍数是有特征的。比如,你任意说出一个数,我们就可以判断它是不是2的倍数。大家一起来试试看:有一个数是730,你觉得它会是2的倍数吗?怎样想的?

  揭题:这说明有的同学在以前的学习中,可能已经意识到了2的倍数的特点。今天我们就利用对倍数和因数的认识,通过找倍数,发现和认识2和5的倍数的特征.(板书课题)

  二、探究新知

  1.找2和5的倍数。

  出示例4,呈现百数表。

  引导:请同学们拿出老师为大家准备的百数表,先在5的倍数上画“△”,再在2的倍数上画“o"。在找这两个数的倍数时,请大家注意每行数里5的倍数有哪些,哪些数是2的倍数。能行吗?

  学生画符号,教师巡视、指导。呈现分别画出符号的数,学生校对、确认。

  2.探究发现特征。

  (1)引导:请观察表里5的倍数,在每行里哪些是5的倍数,你能发现5的倍数有什么特征吗?和同桌同学互相说一说。

  交流:你发现5的倍数有什么特征吗?

  指出:5的倍数,个位上是5或0。(板书:5的倍数,个位上是5或0)

  引导:你能任意说一个这样的三位数或者四位数,验证我们发现的特征吗?大家试一试。(指名学生说出相应的数,引导用除法检验是不是5的倍数)

  追问:怎样的数是5的倍数?

  (2)提问:观察2的倍数,有什么特征?

  指出:2的倍数,个位上是2、4、6、8、0。(板书:2的倍数,个位上是2、4、6、8、o)

  引导:请同桌两人互相举出三位数或四位数的例子,验证发现的2的倍数的特征。

  交流:你是怎样举例的?(学生口答举例)

  个位上不是2、4、6、8、o的数,会是2的倍数吗?自己举出例子试一试。

  交流:你举的什么例子,是不是2的倍数?(指名学生举例说明)

  追问:怎样的数是2的倍数?

  (3)引导:观察表里5的倍数和2的倍数,看看什么样的数既是5的倍数,又是2的倍数。和同桌说说你的想法。

  交流:怎样的数既是5的倍数,又是2的倍数?

  说明:个位是0的数,既是5的倍数,又是2的倍数。

  3.认识偶数和奇数。

  说明:我们已经认识了2的倍数的特征。我们把是2的倍数的数叫作偶数,不是2的倍数的数叫作奇数。

五年级数学教案【优质6篇】

手机扫码分享

Top