《有理数的加法》说课稿 篇一
在学习数学的过程中,有理数的加法是一个非常基础且重要的知识点。有理数包括正整数、负整数和零,而有理数的加法就是在这些数之间进行相加运算。在教学中,我们需要帮助学生理解有理数的加法规则,并掌握正确的计算方法。
首先,我们要引导学生理解有理数的加法可以转化为正数的加法。例如,当我们计算-3+5时,可以将其转化为5-3,即正数的减法。这样可以帮助学生更好地理解有理数的加法规则,从而减少混淆和错误的发生。
其次,我们需要教导学生有理数加法的运算法则。当两个有理数同号时,直接将它们的绝对值相加,并保持它们原来的符号。例如,-2+(-3)=-5。当两个有理数异号时,可以转化为同号后相减,然后按照同号相加的规则进行计算。例如,3+(-4)=3-4=-1。
另外,我们还需要让学生掌握有理数加法的运算性质。有理数的加法满足交换律和结合律。即a+b=b+a,(a+b)+c=a+(b+c)。这两个性质可以帮助学生简化加法运算,提高计算效率。
最后,我们要通过大量的练习来巩固学生对有理数加法的掌握。通过做题,学生可以更加熟练地运用加法规则和性质,提高计算能力和逻辑思维能力。
总的来说,有理数的加法是数学学习中的基础,也是后续学习的重要环节。通过正确的引导和教学方法,可以帮助学生更好地掌握有理数加法的知识,为他们的数学学习打下坚实的基础。
《有理数的加法》说课稿 篇二
在数学教学中,有理数的加法是一个非常基础且重要的概念。有理数的加法不仅仅是简单的数字运算,更是培养学生逻辑思维和数学推理能力的重要途径。
首先,我们可以通过实际生活中的例子引入有理数的加法。例如,当我们在银行存款时,如果存入了100元,然后又取出了50元,最后又存入了30元,我们可以通过正数代表存款,负数代表取款的方式来引导学生理解有理数的加法。这样可以让学生更容易地理解有理数加法的实际意义。
其次,我们可以通过图形的方式来帮助学生理解有理数的加法。通过画坐标轴和点的方法,可以让学生直观地看到有理数的加法是如何进行的。这种视觉化的方法可以帮助学生更好地理解抽象的概念,提高他们的学习效果。
另外,我们还可以通过游戏和趣味活动来激发学生学习的兴趣。例如,可以设计有理数加法的游戏,让学生在游戏中体验到有理数加法的乐趣,从而更加主动地参与学习,提高学习效率。
最后,我们要注重对学生的巩固训练。通过大量的练习题和实际问题,可以帮助学生更好地掌握有理数加法的规则和方法,提高他们的计算能力和解决问题的能力。
总的来说,有理数的加法是数学学习中的基础,也是培养学生逻辑思维和数学推理能力的重要途径。通过多种教学方法和手段的结合,可以帮助学生更好地理解和掌握有理数加法的知识,为他们的数学学习打下坚实的基础。
《有理数的加法》说课稿 篇三
各位领导、老师:
大家好!
今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想 。
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:
1、基础知识目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2、能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是:渗透由特殊到一般的辩证唯物主义思想。
4、个性品质目标:培养学生严谨的思维品质。
三、教学重点、难点、关键
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。
五、学法
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。
在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。
在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
六、教学过程的设计
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
《有理数的加法》说课稿 篇四
《有理数的加法法则》选是九年义务教育华师大版上学期第2章第6节的内容, 本节内容安排两个课时,本课时是本节内容的第一课时。
有理数的加法运算是建立在算术加法运算和有理数意义的基础上展开的,学好有理数的加法运算是学习其他有理数运算,以及后继要学到的实数、代数式、方程、不等式、函数等知识的前提。有理数的加法运算是建构在生产、生活实例上,展现了数学来源于实践,又应用于实践的过程。
本节课的教学目标为:
认知目标:
1、理解有理数加法的意义。
2、理解并掌握有理数加法法则。
3、应用有理数加法法则进行准确运算。
能力目标:
1、让学生体会数形结合思想、转化思想与分类思想。
2、培养学生准确运算能力和归纳总结知识的能力。
情感目标:通过丰富的数学活动培养学生对数学的热爱和树立学习的自信心。
本节课的重点:有理数加法法则的理解和应用。
突破策略:
1、利用多媒体手段,借助于动画演示,化抽象为具体。
2、讲清楚探究有理数加法法则的方法和过程。由于七年级的学生是第一次接触到带有符号的两个数相加,必须克服小学里长期形成的算术加法运算的思维定势,而解决异号两数相加时有关符号和绝对值的问题有一定难度,因此,本节课的难点是对异号两数相加加法法则的理解和应用。
突破策略:
1、精选各种有趣体型,让学生通过训练,尝试成功。
2、利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。
根据弗赖登塔尔的数学教育理论:“数学起源于现实,数学教育的过程是学习‘数学化’的过程,而学生学习数学是一个‘再创造’的过程。”所以本节课我主要采用“引导——发现法”并借助于计算机课件,通过“问题情境——建立模型——解释、应用与拓展”的模式展开教学。
七年级的学生是智力发展的关键年龄,他们活泼好动,注意力易分散,爱发表见解,并希望得到老师的表扬。所以我抓住学生的这一生理特点,努力创造条件和机会,让学生发表见解,发挥学习的主动性;并适当运用多媒体演示,吸引学生的兴趣,使学生的注意力始终集中在课堂上。
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设计如下:
第一个环节发现新知,在这个环节里我设置了两个活动。活动一,根据“兴趣是学生最好的老师”我选用学生感兴趣的足球比赛引入课题。让学生通过对得分的观察,体会到如果加法运算仅局限在小学当中的算术加法运算是不够的,从而顺理成章的引入今天的课题:有理数的加法。
活动二:探索交流。美国学者奥苏伯尔称:必要的经验和预备知识,为先行组织者,而学生已经在2、1至2、5中学了有理数的意义,这些都为学生探索法则架起了桥梁作用的组织者,在此基础上,我设置了六个探究活动。即以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为负,向右为正。这样借助数轴帮助学生理解。既渗透了分类思想又渗透了数形结合思想,最后再由学生对整个规律进行总结归纳补充,从而得出了有理数加法法则。
法则得出后,我设置了一个小活动,比比谁聪明,让学生观察法则中1、2用简短的两句话进行概括,教师在充分肯定学生的回答后给出:同号不变值相加,异号取大值相减。在此基础上再让学生更加深入地熟悉法则,教师继续强调符号与绝对值。
这时只能说学生对法则有了初步的了解,为了加深学生对法则的理解,我设置了第二个环节再探新知。整个法则中尤其强调的是符号与绝对值,为能让学生更加直观地认识到这一点,我让他们解决创设情景中的动漫表格的问题,以个别提问的方式让学生通过表格的填写,体会到整个和的组成就是由符号与绝对值两部分,从而体现了本节课的重点与难点,加深了学生对法则的理解。
在此基础上,我设置了第三个环节应用新知,首先我设置了一道例题(1)(—6)+(—8) (2)(—3、4)+4、3 (3)(+1/2)+(—2/3),由于课前有让学生预习,所以例题是由学生自主完成,作完后由基础较薄弱的学生进行板演,对于板演时出现错误的题目,可由学生自行更正,最后师生共同评述。例题以这样的形式完成,可以使得全体学生尤其是学有困难的学生都能达到基本的学习目标,获得成功的喜悦。
紧接着,我设计了练习。课前我按照学习程度均衡的原则,将本班分成A、B、C、D四个小组。我设置了一道抢答题,由组间进行抢答,对于抢答成功的小组给予福娃奖励,最后以福娃个数多的小组获胜,以此激发学生学习的兴趣。
根据七年级学生的年龄特征,为能更大限度地吸引学生的兴趣,我还设置了这样一个活动:男生出题,女生回答;女生出题,男生回答。将整节课推向了高潮。在学生兴趣正浓时,我设置了一个小游戏,玩有理数牌,请同桌间的两个同学,各自抽取一张牌,进行求和比赛,看谁算得又快又准。教师在学生之间巡回参与活动。这样设计符合学生年龄特征的游戏,体现了新课改理论,让学生在“学在玩”在“玩中学”。
设置练习时,除了在形式上做了充分的考虑之外,我还注意到学生的思维是一个循序渐进的过程。所以除了刚才所设置的基础训练之外,我还设置了变式练习。第一题((—5)+( )=—8)以填空的形式出现,如果题目是 ,那么大部分学生马上可以得到—8,所以以这样的形式出现就对学生的解题造成了困难。通过对这道题目的解答,可加深学生对法则的理解,并为紧接着要学的有理数减法作好铺垫,同时也培养了学生发散思维的能力。第2题(一只小狗在一条东西向的跑道上,先走了50米,又走了30米,他现在位于原来位置的哪个方面,与原来位置相跑多少?)与之前的探究活动相呼应,须分四种情况进行讨论。从而培养了学生的分类思想。
为体现数学来源于生活,又服务于生活。我设置了这样一道应用题(星期天,小明与爸爸在安溪中国茶都代售茶叶,爸爸获利120元,而小明却获利-20元,问这一天他们共赚了多少钱?)通过此题,激发学生学习数学的热情。
此节课的教学,可以有多种不同的设计方案、大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计。
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题、但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的、第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会、权衡利弊,我们主张采用第二种教学方法。
总之,整个教学旨在,通过创设问题情境,引导学生进行分类、观察、分析,进而归纳从具体到一般的规律,得出有理数加法法则,在学生的学习过程中,充分让学生感受、体会知识的产生和发展过程,注重促使学生积极思维,主动探索,用于发现。
《有理数的加法》说课稿 篇五
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:
1、使学生掌握有理数加法法则,并能运用法则进行计算。
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律。
3、 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
四、学情分析
1、学生非常熟悉正数加正数,正数加零的情况。
2、有理数的分类、数轴、绝对值的相关知识已经掌握。
3、学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1、将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2、由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3、在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1、回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; —7和4; 7和—4; —7和—4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2、创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0、
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:
①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?
②土星表面的夜间平均气温为—150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回"研究生"共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0、
3、 一个数同0相加,仍得这个数。
老师总结口诀:"同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑"。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力。
(三)运用新知深入体会
例1计算(—3)+(—9)。
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。
解:(—3)+(—9)=—12。
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对,解题时,先确定和的符号,后计算和的绝对值。
(四)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1、通过"问题串"的设置,激发兴趣,引起学生深层次的思考;
2、通过"互举例子"、"小组竞赛"两个活动,鼓励学生主动参与活动。
3、通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4、在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
《有理数的加法》说课稿 篇六
一、说教材:
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。
有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
(二)课程目标:
1
、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2
、过程与方法目标:
(1)在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3
、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则。
难点:理解有理数加法法则,尤其是理解异号两数相加的法则。
二、说教法:
在教学过程中一如既往的开展新、行、省、信四字教育模式的教学。
新
:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);
行
:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括)。