高职数学指数函数说课稿 篇一
今天我们来说一下指数函数。指数函数是高中数学中的一个重要内容,也是在高职院校数学课程中的基础知识之一。指数函数的定义是f(x)=a^x,其中a为底数,x为指数。当底数a大于1时,函数呈指数增长;当底数a在0和1之间时,函数呈指数衰减;当底数a等于1时,函数为常数函数;当底数a小于0时,函数为无定义。指数函数在自然界和社会生活中有着广泛的应用,比如生物学中的生长模型、经济学中的复利计算等。
在教学中,我们可以通过图像展示来介绍指数函数的基本特点。当底数a大于1时,图像呈指数增长的形态,当底数a在0和1之间时,图像呈指数衰减的形态。我们还可以通过实例来说明指数函数的应用,比如用指数函数来描述细菌繁殖的过程,或者用指数函数来计算投资的收益等。
在教学过程中,我们需要引导学生理解指数函数的概念,掌握指数函数的性质和图像特点,培养学生的应用能力和解决问题的能力。通过实例分析和练习题目,帮助学生理解指数函数在现实生活中的应用,提高学生的数学素养和解决问题的能力。
指数函数是高职数学课程中的重要内容,学生需要认真学习掌握。通过讲解指数函数的基本概念和图像特点,引导学生理解指数函数在现实生活中的应用,提高学生的数学素养和解决问题的能力。希望同学们能够认真对待数学学习,努力提高自己的数学水平,为将来的学习和工作打下坚实的基础。
高职数学指数函数说课稿 篇二
指数函数是高职数学课程中的一个重要内容,也是数学中的基础知识之一。指数函数在现实生活中有着广泛的应用,比如在生物学中描述生长模型、在经济学中计算复利等。指数函数的定义是f(x)=a^x,其中a为底数,x为指数。指数函数的图像特点与底数a的大小有关,当底数a大于1时,函数呈指数增长的形态;当底数a在0和1之间时,函数呈指数衰减的形态。
在教学中,我们可以通过实例来说明指数函数的应用。比如用指数函数来描述细菌繁殖的过程,或者用指数函数来计算投资的收益等。通过实例分析和练习题目,帮助学生理解指数函数在现实生活中的应用,提高学生的数学素养和解决问题的能力。
在教学过程中,我们还需要引导学生掌握指数函数的性质和图像特点。通过图像展示,让学生直观地了解指数函数的基本特点,培养学生的数学思维和解决问题的能力。通过练习题目,帮助学生巩固所学知识,提高学生的数学水平和应用能力。
指数函数是高职数学课程中的重要内容,学生需要认真学习掌握。通过讲解指数函数的基本概念和图像特点,引导学生理解指数函数在现实生活中的应用,提高学生的数学素养和解决问题的能力。希望同学们能够认真对待数学学习,努力提高自己的数学水平,为将来的学习和工作打下坚实的基础。
高职数学指数函数说课稿 篇三
一、说教材
◆教材的地位及前后联系
本节课是《中等职业教育规划教材数学》第一册第四章第二节《指数函数》。本节课是学生在已掌握了函数的一般性质之后系统学习的第一个函数,通过学习可进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,也为今后进一步研究函数的性质特别是后面的对数函数打下坚实的基础,同时也培养了学生对函数的应用意识。因此本课有十分重要地位和作用,它对知识起到了承上启下的作用。
◆教学目标:
☆知识目标:
1、掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数;
2、掌握指数函数的图像和性质;
3、能根据单调性解决比较大小的问题。
☆能力目标:
1、培养学生观察、分析、分类、归纳、探索发现解决问题的能力,体会从特殊到一般的研究方法和分类讨论思想。
2、提高学生运用现代信息化手段解决数学问题的能力。
☆情感目标
1、通过问题的解决,树立学生的自信心,体会成功与快乐;
2、渗透数形结合、分类讨论的思想,激发学生学习数学的兴趣,培养学生探索精神和创新意识;
3、通过学习让学生感受到数学与现实生活的联系,让学生发现生活中的函数问题。
◆教材的重点和难点:
☆教学重点:指数函数的概念、图像和性质;
☆教学难点:如何由图像归纳指数函数的性质以及性质的应用。
二、◆学情分析
根据这几年的教学我发现学生在后面学习中一遇到指对数问题就发蒙,原因是什么呢?问题就出在学生刚刚学完第三章函数的性质,应用的又是初中比较熟悉的一元二次函数。一下子出现了一个非常陌生的函数而且需要记很多性质,学生感觉很吃力。对于我任教的12财会班的学生整体理论知识水平参差不齐,学生缺乏自主探索、发现的意识。但是性格活泼、兴趣广泛,乐于实践。因此我在备课时以学生为本,以学生活动为主线,从兴趣出发,由2012年春节晚会的魔术引出本节课的指数函数,让学生从特殊到一般去认识指数函数,然后通过多媒体课件的充分展示让学生分组讨论、归纳出指数函数的性质。
三、教法、学法
◆教学方法:启发、合作探究、讲练结合等教学方法。充分遵循“教师为主导,学生为主体”的教学原则,采用多媒体辅助教学手段,借助多媒体,演示指数函数的图像形成过程,便于总结函数的性质。
◆学习方法:采用自主探究、小组合作、观察归纳的学习方法。
四、教学程序
◆教学流程:
教学流程设计
1、创设情境,导入新课
2、构建模型,形成概念
3、深入探究,发现性质
4、讲练结合,巩固提高
5、课堂小结,构建体系
6、作业布置,延伸课堂
◆教学过程:
1、创设情境,导入新课
通过春节的撕报纸的魔术调动学生的兴趣,教师接着引导学生分析撕报纸得到的分数与撕报纸的次数之间的函数关系,分析出撕报纸得到的每一分小报纸的面积与撕报纸的次数之间得到的函数关系,从而建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。
2、构建模型,形成概念
通过两个具体的指数函数模型,给出指数函数概念,让学生体会由特殊到一般的思想,并通过练习一判断一个函数是否是指数函数,加深学生对指数函数概念的理解。
3、深入探究,发现性质
在这个环节,函数图像的性质是本节课的重点也是难点,我准备采用多媒体技术辅助教学突破重点、难点,这一环节关键是弄清楚底数a的变化对函数图像及性质的影响,利用多媒体动感显示,通过颜色的区别,加深感性认识,非常直观形象地演示a的变化与图像的变化规律,突破静态思维,使难点迎刃而解。
华罗庚先生曾说:“数缺形时少直观,形缺数时难入微。”探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图像突破,体会数形结合的思想。通过两个指数函数的作图过程巩固学生作图能力,让学生初步发现图像规律。紧接着同时通过软件让学生举出4个指数函数,通过软件快速画出四个具体的指数函数图像,充分引导学生通过观察图像发现指数函数的图像规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。
4、讲练结合,巩固提高
教师通过对例题一比较两个函数值的大小、例题二求函数的定义域引导学生如何使用函数的性质解决问题,同时通过学生进行一些巩固练习使学生对函数能进行较为基本的应用。
5、课堂小结,构建体系
小结环节,让学生自己总结函数的概念和性质,让学生建立研究函数的知识体系
6、作业布置,延伸课堂
作业布置环节必做题巩固学生上课内容,选做题“古莲子年龄之谜”的问题为学习能力较强的同学更大的发挥空间,因材施教,分层作业,巩固提高,为后续的学习奠定基础,同时也拓展学生的知识视野。
高职数学指数函数说课稿 篇四
一、说教材
1.《指数函数》在教材中的地位、作用和特点
今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的.图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2.教学目标、重点和难点
通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:初中已经学习了正比例函数、反比例函数和一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
能力维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
(1)教学目标
知识目标:①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系②掌握指数函数的概念③掌握指数函数的图象和性质
能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
情感目标:①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力
(2)教学重点和难点
教学重点:指数函数的图象和性质。
教学难点:指数函数的图象性质与底数a的关系。
(3)教学关键:
从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法与学法指导
1.学法指导
由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试:
(1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。
(2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。
(3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
(4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
2.教法选择
(1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法。
(2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图)
三、教学设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1.创设情景、导入新课
教师活动:①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1个分裂成2个,2个分裂成4个,......,一个这样的细胞分裂x次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。③引导学生把对应关系概括到形式。
学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式;
设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2.启发诱导、探求新知
(1)指数函数概念的引出
教师活动:①引导学生观察这两个函数,寻找他们的特征②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现③引导学生观察指数函数与幂函数在概念上的区别。
学生活动:①学生独立思考并回忆指数的概念;②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;③理清指数函数与幂函数在概念上的区别。
设计意图:①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。
(2)研究指数函数的图象
教师活动:①给出两个简单的指数函数和,并要求学生画它们的图象②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象③利用函数作图器和几何画板作图。
学生活动:①思考画函数图象的方法有哪些?②画出这两个简单的指数函数图象③让学生利用计算器或计算机来画。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。
四、板书设计
考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书,
说明;这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。
高职数学指数函数说课稿 篇五
一、说教材:
1.在教材中的地位和作用
本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。
二、说学情:
2.学情分析
心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。
此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
三、说教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。
过程与方法:让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。
四、说教学方法:
教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
(1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;
(2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。
(3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。
五、说教学过程:
1、导入新课(2分钟)
创设情境,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?
财主应付给打工者的工钱为1073741824分≈1073万元
(为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)
2、探索新知(7分钟)
问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?
问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?
归纳:函数中,指数x为自变量,底2为常数.
概念:一般地,形如的函数叫做指数函数,其中底()为常量.指数函数的定义域为,值域为
(设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。)
3、分组讨论(8分钟)
4、例题讲解(12分钟)
5、强化练习(8分钟)
6、课堂总结(2分钟)
7、布置作业(1分钟)