正比例教学设计(最新3篇)

时间:2012-07-05 06:24:39
染雾
分享
WORD下载 PDF下载 投诉

正比例教学设计 篇一

在教学设计中,正比例教学设计是一种常见且有效的教学模式。正比例教学设计是指根据学生的学习能力和兴趣,设计相应的教学内容和教学方法,使学生在学习过程中能够更好地理解和掌握知识。下面将介绍正比例教学设计的一些特点和优势。

首先,正比例教学设计注重因材施教,充分考虑学生的学习特点和需求。教师会根据学生的不同水平和兴趣,设计不同的教学内容和教学方法,以满足每个学生的学习需求。这样可以有效提高学生的学习积极性和学习效果,使每个学生都能够得到适合自己的教育。

其次,正比例教学设计注重教学资源的合理利用。在正比例教学设计中,教师会根据学生的学习情况和教学目标,合理选择和利用各种教学资源,包括教材、多媒体教学、实验设备等。这样可以使教学更加生动有趣,激发学生的学习兴趣,提高学生的学习效果。

最后,正比例教学设计注重学生的自主学习和合作学习。在正比例教学设计中,教师会鼓励学生主动参与学习,提倡学生之间的合作学习和交流。这样可以促进学生的自主学习能力和团队合作能力的发展,培养学生的创新思维和解决问题能力。

总的来说,正比例教学设计是一种注重学生个性发展和全面素质培养的教学模式,有利于提高学生的学习效果和学习兴趣。教师在教学设计中可以灵活运用正比例教学设计的理念和方法,为学生提供更加优质的教育资源和教学环境,帮助他们更好地成长和发展。

正比例教学设计 篇二

正比例教学设计是一种基于学生个性和需求的教学模式,通过科学合理的教学设计,提高学生的学习效果和学习兴趣。正比例教学设计的关键在于充分考虑学生的学习特点和需求,设计适合每个学生的教学内容和教学方法。下面将介绍正比例教学设计的一些实践案例和效果评价。

首先,一所小学采用正比例教学设计,在数学课上进行了实践。教师根据学生的不同学习水平和兴趣,设计了不同难度和形式的数学题目,让学生选择适合自己的题目进行解答。结果显示,学生们在解题过程中更加主动和积极,学习兴趣和学习效果都得到了提高。

其次,一所中学采用正比例教学设计,在英语课上进行了实践。教师根据学生的英语水平和学习需求,设计了不同形式的英语教学活动,包括听力练习、口语表达和阅读理解等。通过这些活动,学生的英语综合能力得到了全面提升,学习效果显著。

最后,一所大学采用正比例教学设计,在专业课程上进行了实践。教师根据学生的专业背景和学习目标,设计了不同深度和广度的教学内容,结合实际案例和实践活动,引导学生深入学习和思考。结果显示,学生的专业知识和实践能力都得到了提升,就业竞争力明显增强。

总的来说,正比例教学设计是一种有效的教学模式,有利于提高学生的学习效果和学习兴趣。教师在教学设计中可以灵活运用正比例教学设计的理念和方法,为学生提供个性化的教育服务,帮助他们更好地成长和发展。正比例教学设计将是未来教育的发展趋势,值得教育工作者和学生共同探索和实践。

正比例教学设计 篇三

正比例教学设计

  篇一:正比例的意义教案人教版

  素质教育目标

  (一)知识教学点

  1.使学生理解正比例的意义。

  2.能根据正比例的意义判断两种量是不是成正比例。

  (二)能力训练点

  1.培养学生用发展变化的观点来分析问题的能力。

  2.培养学生抽象概括能力和分析判断能力。

  (三)德育渗透点

  1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。

  2.进一步渗透函数思想。

  教学重点:

  使学生理解正比例的意义。

  教学难点:

  引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

  教具学具准备:

  投影仪、投影片、小黑板。

  教学步骤

  一、铺垫孕伏

  用投影逐一出示下列题目,请同学回答:

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、探究新知

  1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。

  2.教学例1

  (1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米??

  (2)出示下表,并根据上述内容填表。

  (3)边填表边思考:在填表过程中,你发现了什么?

  学生交流时,使之明确。

  ①表中有时间和路程两种量。

  ②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米??时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。

  教师点拨:像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:

  两种相关联的量)

  ③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。

  教师问:根据计算,你发现了什么?

  引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。

  教师指出:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)

  ④比值60,实际就是火车的速度。用式子表示它们的关系就是:

  (4)教师小结:

  刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总

  3.教学例2

  (1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

  (2)观察上表,引导学生明确:

  ①表中有数量(米数)和总价这两种量,它们是两种相关联的量。

  ②总价随米数的变化情况是:

  米数扩大,总价随着扩大;米数缩小,总价也随着缩小。

  ③相对应的总价和米数的比的比值是一定的。

  ④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:

  (3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)

  4.抽象概括正比例的意义。

  (1)比较例1、例2,思考并讨论,这两个例子有什么共同点?

  (2)学生初步交流时引导学生明确:

  ①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量; ②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。

  教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)

  ③例1中路程与时间的比的`比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。

  (学生答不出来时,教师引导、点拨,并补充板书:两种量中)

  (3)引导学生抽象概括出两例的共同点:

  两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。

  (4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。 (补充板书:如果这 成正比例的量 正比例关系)

  这就是我们这节课学习的“正比例的意义”(板书课题)

  (5)看书11、13页的内容,进一步理解正比例的意义。

  (6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。

  (7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  (9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  5.教学例3

  (1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  (2)根据正比例的意义,由学生讨论解答。

  (3)汇报判断结果,并说明判断的根据。

  教师板书:面粉的总重量和袋数是两种相关联的量。

  所以面粉的总重量和袋数成正比例。

  6.反馈练习

  让学生试做第13页的做一做,并订正。

  三、巩固发展

  1.完成练习三第1题。

  先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?

  2.完成练习三第2题的(1)-(9)

  先让学生自己判断,再订正。

  四、全课小结(师生共同进行)

  通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?

  篇二:最新人教版六年级下册数学成正比例的量精品教案

  教学内容:成正比例的量

  知识与技能:使学生理解正比例的意义,会正确判断成正比例的量。

  过程与方法:使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。

  教学重点:正比例的意义。

  教学难点:正确判断两个量是否成正比例的关系。

  教学过程:

  一、揭示课题

  1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

  在教师的此导下,学生会举出一些简单的例子,如:

  1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

  2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

  3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

  4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

  5、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

  二、探索新知

  1、教学例1

  (1)、出示小黑板。问:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

  (2)、出示表格。

  问:你有什么发现?

  学生不难发现:杯子的底面积不变,是25立方厘米。

  板书:50100150200 ?......?252468

  教师:体积与高度的比值一定。

  (3)、说明正比例的意义。

  在这一基础上,教师明确说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

  学生读一读,说一说你是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一、两种相关联的量。

  第二、其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。

  第三、两个量的比值一定。

  (1)、用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

  Y?K(一定) X

  (2)、想一想:

  师:生活中还有哪些成正比例的量?

  学生举例说明。如:

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

正比例教学设计(最新3篇)

手机扫码分享

Top