矩形的判定定理教学设计(精选6篇)

时间:2018-01-07 05:19:11
染雾
分享
WORD下载 PDF下载 投诉

矩形的判定定理教学设计 篇一

在初中数学中,矩形的判定定理是一个重要且基础的概念。教师在教学过程中需要设计恰当的教学活动,帮助学生深入理解这一定理。本文将从教学目标、教学内容、教学方法和教学评价四个方面展开,设计矩形的判定定理的教学内容。

首先,确定教学目标是教学设计的第一步。对于矩形的判定定理,教学目标主要包括:学生能够准确理解矩形的性质和特点;学生能够熟练运用矩形的判定定理解决相关问题;培养学生的逻辑思维能力和数学推理能力。

其次,教学内容应该围绕矩形的判定定理展开。教师可以通过引入相关的几何图形、实际问题等情境,让学生在实践中感知矩形的特点,进而深入理解矩形的判定定理。教学内容的设置要符合学生的认知水平,循序渐进,保证学生能够逐步掌握知识点。

第三,选择合适的教学方法也是至关重要的。在教学矩形的判定定理时,可以采用讲解、示范、引导、练习等多种教学方法相结合。例如,教师可以通过讲解矩形的定义和性质,示范如何判定一个四边形为矩形,引导学生进行练习和实践操作,从而巩固所学知识。

最后,对学生的学习情况进行评价也是必不可少的。教师可以通过课堂练习、作业、小组讨论、考试等方式对学生的学习情况进行评价。及时发现学生的问题和不足,帮助他们及时调整学习方法,提高学习效果。

综上所述,设计矩形的判定定理的教学内容需要从教学目标、教学内容、教学方法和教学评价四个方面全面考虑,确保教学过程科学有效,提高学生的学习效果。

矩形的判定定理教学设计 篇二

矩形作为初中数学中的重要几何概念,在教学中需要设计合理的教学活动,帮助学生深入理解其判定定理。本文将从知识目标、能力目标、情感目标和教学过程四个方面展开,设计矩形的判定定理的教学内容。

首先,教学设计需要明确知识目标。对于矩形的判定定理,知识目标主要包括:学生能够准确理解矩形的定义和性质;学生能够掌握矩形的判定定理及其应用;学生能够运用矩形的判定定理解决相关问题。

其次,教学设计还应该考虑到培养学生的能力目标。通过研究矩形的判定定理,可以培养学生的逻辑思维能力、推理能力和解决问题的能力。教学设计要注重引导学生主动思考、探究和实践,提高他们的综合能力。

第三,教学设计还需要关注学生的情感目标。在教学过程中,教师可以通过引入生动有趣的教学活动、启发学生的兴趣和探究欲望,让学生在轻松愉快的氛围中学习矩形的判定定理,激发他们学习的热情。

最后,教学过程的设计也是至关重要的。教师可以通过导入情境、讲解知识点、引导学生探究、讨论解答问题等方式,设计丰富多彩的教学过程,帮助学生深入理解矩形的判定定理。同时,教学设计还要注重巩固知识、拓展应用,提高学生的学习效果。

综上所述,设计矩形的判定定理的教学内容需要考虑知识目标、能力目标、情感目标和教学过程四个方面,确保教学过程科学有效,提高学生的学习兴趣和学习效果。

矩形的判定定理教学设计 篇三

  一、说教材

  《矩形的判定》是人教版教科书《数学》八年级(下)第19章第二节的内容,本课为第2课时。矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。

  二、说目标

  1.知识与技能

  在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;

  规范推理的书写格式;

  应用矩形定义、判定等知识,解决简单的实际问题。

  2.过程与方法

  通过矩形的判定定理猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。

  3.情感、态度与价值观

  能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。

  三、说重点难点

  1.重点:矩形的判定。

  2.难点:矩形的判定及性质的综合应用。

  四、说教学过程

  判定定理都是以“定义”为基础推导出来的。因此本节课要从复习矩形定义下手,得到矩形的判定方法,引出课题。除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:矩形是在平行四边形的基础上添加有一个角是90度,那么还有别的添加方式吗?让学生探究:在平行四边形的边上添加条件是否可以可以成为矩形呢?同学么探究,发现在边上添加不出来条件使之成为矩形,那么学生自然会想到在对角线上添加条件。这样就猜想出对角线相等的平行四边形是矩形。然后同学们以组为单位对判定进行证明。这样既培养了学生对问题的猜想又培养了学生分析问题、解决问题的能力,又培养了学生合作学习的精神。所以在教学的过程中向学生提供充分从事数学活动的时间,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、培养能力、获得经验,鼓励学生主动参与、合作学习。同时加强对学生逻辑推理能力的培养。证明题的推理过程对于学生来说大部分学生还是心里明白,但书写时又不知道该先说那一步。因此在教学中我着重培养这方面,培养学生如何推理使证明题言之有序、条理清楚。

  在例题的配备上我出了一道既能复习距形的性质又能检查判定的席题。这样新旧知识

  本课主要学习方式是学生在自主探索和合作交流的过程中,使同学们真正理解和掌握基本的数学知识与技能、培养能力。树立学生学习数学的信心,让学生在学习活动中获得成功的喜悦,从而激发学生学习数学的兴趣。让学生充分经历知识形成的全过程。

矩形的判定定理教学设计 篇四

  一、教材分析(说教材):

  1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

  2、教学目标:

  1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。

  2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。

  3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

  4、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用

  下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:

  二、教学策略(说教法):

  1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

  2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。

  三、教学过程

  环节一:

  创设情境、导入新课

  通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)

  回顾:

  1、矩形的定义:有一个角是直角的平行四边形叫矩形

  2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。

  3、平行四边形的性质:

  平行四边形的性质

  平行四边形判定

  平行四边形两组对边分别相等

  平行四边形两组对边分别平行

  两组对边分别平行(或相等)的四边形是平行四边形

  平行四边形一组对边平行且相等

  平行四边形对角线互相平分

  一组对边平行且相等的四边形是平行四边形

  对角线互相平分的四边形是平行四边形

  平行四边形两组对角分别相等

  两组对角分别相等的四边形是平行四边形

  环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。

  活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。

  定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)

  环节三:应用辨析,巩固定理

  总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。

  矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:

  一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。

  二、填空题:

  1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是 形,若∠AOB=60,那么AB:AC= ,若AB=4cm,BC= cm,矩形ABCD的面积为 。

  2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是 形。习题设置原则及解决方法说明:

  判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。

  环节四:开放训练,发散思维

  变式训练

  如图,△ABC中,点O是AC边上的一个动点,

  过点O作直线MN∥BC,设MN交∠BCA的

  平分线于点E,交∠BCA的外角平分线于点F。

  (1)求证:EO=EF

  (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。

  变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。

  环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

  环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。

  以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!

矩形的判定定理教学设计 篇五

  一.学生情况分析

  学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。

  二.教学任务分析

  教学目标:

  知识目标:

  1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

  2.掌握正方形的性质定理1和性质定理2。

  3.正确运用正方形的性质解题。

  能力目标:

  1.通过四边形的从属关系渗透集合思想。

  2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。

  情感与价值观

  1.通过理解四种四边形内在联系,培养学生辩证观点

  教学重点:正方形的性质的应用.

  教学难点:正方形的性质的应用.

  三、教学过程设计

  课前准备

  教具准备: 一个活动的平行四边形木框、白纸、剪刀.

  学生用具:白纸、剪刀

  教学过程设计分成四分环节:

  第一环节:巧设情境问题,引入课题

  第二环节:讲授新课

  第三环节:新课小结

  第四环节:布置作业

  第一环节 巧设情境问题,引入课题

  进入正题,提出本节课的研究主题正方形

  第二环节 讲授新课

  主要环节

  (1)呈现两种通过不同途径得到正方形的过程,给正方形下定义

  (2)讨论正方形的性质

  (3)通过练习加强对正方形性质的理解

  (4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。

  (5)寻找正方形的判定方法

  目的:

  1. 正方形是特殊的平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。

  2. 由于采用了两种正方形形成的方式,因此正方形的性质和判定方法都可以从中挖掘和发现。

  大致教学过程

  呈现一个平行四边形变成正方形的全过程.(演示)

  由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形.

  这个变化过程,可用如下图表示

  由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形.

  这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形.

  这个变化过程,也可用图表示

  你能根据上面的变化过程,给正方形下定义吗?

  一组邻边相等的平行四边形是菱形.正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形.

  由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形.

  因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质。

  正方形的`性质:

  边:对边平行、四边相等

  角:四个角都是直角

  对角线:对角线相等,互相垂直平分,每条对角线平分一组对角。

  正方形是轴对称图形吗?如是,它有几条对称轴?

  正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线。

  例题

  [例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数。

  分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性.

  解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45

  拿出准备好的剪刀、白纸来做一做

  将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)

  只要保证剪口线与折痕成45角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形.

  正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?

  正方形、矩形、菱形及平行四边形四者之间有什么关系呢?

  它们的包含关系如图:

  此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?

  先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;或者先判定一个四边形是菱形,再判定这个菱形是矩形.

  由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断。

  第三环节 课堂练习

  教材 随堂练习1,2

  第四环节 课时小结

  正方形的定义:一组邻边相等的矩形.

  正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)

  第五环节 课后作业

  课本习题4.7 1,2,3

  四.教学设计反思

  在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。

  为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定图形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。

矩形的判定定理教学设计 篇六

  教学目标:

  1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

  2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想

  教法设计:

  观察、启发、总结、提高,类比探讨,讨 论分析,启 发式.

  教学重点:

  矩形的判定.

  教学难点:

  矩形的 判定及性质的综合应用.

  教具学具准备:

  教具(一个活动的平行四边形)

  教学步骤:

  一.复习提问:

  1.什么叫做平行四边形?什么叫做矩形?

  2.矩形有哪些性质?

  3.矩形与平行四边形有什么共同之处?有什么不同之处?

  二.引入新课

  设问:

  1.矩形的判定.

  2.矩形是有一个角是直角的平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定).除此之外,还有其它 几种判定矩形的方法,下面就来研究这 些方法.

  方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)

  矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生 一道写出证明过程。)

  归纳矩形判定方法(由学生小 结):

  (1)一个角是直角的平行四边形.

  (2)对角线相等的平行四边形.

  (3)有三个角是直角的四边形.

  2 .矩形判定方法的实际应用

  除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

  3.矩形知识的综合应用。(让学生思考,然后师生共同完成)

  例:已知 的对角线 , 相交于

  ,△ 是等边三角形, ,求这个平行

  四边形的面积(图2).

  分析解题思路:(1)先判定 为矩形.(2)求 出 △ 的直角边 的长.(3)计算 .

  三.小结

  (1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等.判定方法3的两个条件是:①是四边形,②有三个直 角.

  矩形的判定方法有哪些?

  一个角是直角的平行四边形

  对角线相等的平行四边形-是矩形。

  有三个角是直角的四边形

  (2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

  补充例题

  例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,

  求证:四边形EFGH为矩形

  分析:利用对角线互相平分且相等的四边形是矩形可以证明

  证明:∵ABCD为矩形

  AC=BD

  AC、BD互相平分于O

  AO=BO=CO=DO

  ∵AE=BF=CG=DH

  EO=FO=GO=HO

  又HF=EG

  EFGH为矩形

  例2:判断

  (1)两条对 角线相等四边形是矩形()

  (2)两条对角线相等且互相平分的四边形是矩形()

  (3)有一个角是 直角的四边形是矩形( )

  (4)在矩形内部没有和四个顶点距离相等的点()

  分析及解答:

  (1)如图(1)四边形ABC D中,AC=BD,但ABCD不为矩形,

  (2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形

  (3)如图(2),四边形ABCD中,B=90,但ABCD不为矩形

矩形的判定定理教学设计(精选6篇)

手机扫码分享

Top