圆柱的体积教学设计 篇一
在初中数学教学中,圆柱的体积是一个基础而重要的概念。如何设计一堂富有趣味性和启发性的圆柱体积教学课程,让学生能够轻松理解和掌握这一知识点呢?
首先,我们可以通过引入生活中的实际案例来引起学生的兴趣。比如,可以让学生想象一个装满果汁的圆柱形容器,然后通过测量直径和高度的方式计算出果汁的体积。这样的案例既具体又直观,能够引导学生从实际问题中理解圆柱体积的计算方法。
其次,可以通过多媒体展示的方式来呈现圆柱的体积计算公式及推导过程。通过图像和动画的展示,可以帮助学生更直观地理解公式中各个参数的含义,加深他们对圆柱体积计算方法的理解。
此外,可以设计一些趣味性的小组活动,让学生在实际操作中掌握计算圆柱体积的方法。比如,可以让学生分组进行实际测量和计算,然后比较各组的结果,让学生通过实践来加深对圆柱体积的理解。
最后,在课堂结束时,可以设计一些小测验或练习题,让学生在课后进行巩固和复习。通过及时的反馈和指导,可以帮助学生发现自己的不足之处,及时调整学习方法,提高学习效果。
总的来说,设计一堂富有趣味性和启发性的圆柱体积教学课程,需要引入生活案例、多媒体展示、小组活动和课后练习等多种教学方法。只有通过多种形式的教学手段,才能真正激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握圆柱的体积计算方法。
圆柱的体积教学设计 篇二
圆柱的体积是初中数学中一个基础而重要的概念,如何设计一堂既有趣味性又具有启发性的圆柱体积教学课程呢?
首先,可以通过引入生活中的实际案例来引起学生的兴趣。比如,可以让学生想象一个装满水的圆柱形容器,然后通过测量直径和高度的方式计算出水的体积。这样的案例既具体又直观,能够让学生从实际问题中理解圆柱体积的计算方法。
其次,可以通过多媒体展示的方式来呈现圆柱的体积计算公式及推导过程。通过图像和动画的展示,可以帮助学生更直观地理解公式中各个参数的含义,加深他们对圆柱体积计算方法的理解。
此外,可以设计一些趣味性的小组活动,让学生在实际操作中掌握计算圆柱体积的方法。比如,可以让学生分组进行实际测量和计算,然后比较各组的结果,让学生通过实践来加深对圆柱体积的理解。
最后,在课堂结束时,可以设计一些小测验或练习题,让学生在课后进行巩固和复习。通过及时的反馈和指导,可以帮助学生发现自己的不足之处,及时调整学习方法,提高学习效果。
综上所述,设计一堂富有趣味性和启发性的圆柱体积教学课程需要引入生活案例、多媒体展示、小组活动和课后练习等多种教学方法。只有通过多种形式的教学手段,才能真正激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握圆柱的体积计算方法。
圆柱的体积教学设计 篇三
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh(设计意图这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
圆柱的体积教学设计 篇四
教学目标:
1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
掌握和运用圆柱体积计算公式。
教学准点:
掌握圆柱体积公式的推导过程。
教学设想:
1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。
2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。
3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。
4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。
5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。
6.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。
7.由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。
教学过程:
一、问题导入,质疑问难
师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?
师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?
生:圆柱学具。
师:是的。仔细观察,你有什么发现?
生:圆柱学具占据了学具槽的空间。
师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?
生:圆柱的体积就是圆柱所占空间的大小。
师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。
生:体积大小接近,不能确定。
师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)
二、图形转化。猜想推理
师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。)
生:用公式计算。
生:用水或沙子转化计算。
师:你们是怎样转化的,具体说说。
生:用橡皮泥转化计算。
生:用圆形纸片叠加计算……
师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?
生:因为没有实验学具,所以只能用公式计算。
师:其他的方法可以在课后进行。
师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。
生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。
师:联系旧知识,采用转化法,确实不错。
师:那现在它是一个圆柱,你想怎么办?
生:像刚才一样进行平均分。
师:你能具体说说吗?
生:沿着圆柱的底面直径平均切分成16个小扇形。
师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。
生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。
师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……
师:这是同学们刚才的转化过程。
师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。
师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)
总结文字公式:长方体体积=底面积×高
圆柱体体积=底面积×高
师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。
生:v=shv=(d/2)2π×hv=π2×hv=(c÷π/2)2π×h
师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)
生:相同之处都是底面积乘以高,不同是底面积求法不同。
师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。
三、运用公式,解决问题
师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。
1号底面积50平方厘米,高2.1分米:
2号直径是10厘米,高20厘米;
3号半径是4厘米,高22厘米;
4号底面周长31.4厘米,高18厘米。
师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?
师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?
师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。
四、巧用公式,多重探究
师:同学们到现在为止,你都学到了哪些关于圆柱的知识?
生:表面积、体积、容积。
师:老师这里有一组习题。请你们选择合适的问题。
师:读完之后,你认为求什么就可以大声地说出来。
(生:体积、容积、表面积。)
学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?
师:说说你选择问题的根据是什么?
生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。
五、开放训练,拓展提升
师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上x分米长的丝带,(打结部分忽略不计)挖去1根直径为x厘米,高是x厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。
圆柱的体积教学设计 篇五
学情分析:
根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学目标:
1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重点:
圆柱体体积的计算
教学难点:
圆柱体体积公式的推导
教学用具:
圆柱体学具
教学过程:
一、复习引新
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求说出解题思路。
2.提问:什么叫体积?常用的体积单位有哪些?
3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)
二、探索新知
1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)
2、公式推导。(有条件的可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
3、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
4、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
5、教师演示。
把圆柱拼成了一个近似的长方体。
6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?
(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?
板书:
长方体体积底面积高
圆柱体积底面积高
8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
9、用字母如何表示。
V=sh
10、小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
11、教学算一算
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)
12、教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
三、巩固练习
课后“练一练”里的练习题。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。
圆柱的体积教学设计 篇六
教学目标:
1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3.情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:
圆柱的体积公式演示教具,圆柱的体积公式演示课件
教学过程:
一、教学回顾
1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入
(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?
(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受
1、猜测圆柱的体积和那些条件有关。(电脑演示)
2、探究推导圆柱的体积计算公式。
小组合作讨论:
(1)将圆柱体切割拼成我们学过的什么立体图形?
(2)切拼前后的两个物体什么变了?什么没变?
(3)切拼前后的两个物体有什么联系?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)
2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?
3、要用这个公式计算圆柱的体积必须知道什么条件?
三、练习
1、填空
(1)、圆柱体通过切拼转化成近似的()体。这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。因为长方体的体积等于(),所以,圆柱体的体积等于()用字母表示()。
(2)、底面积是10平方米,高是2米,体积是()。
(3)、底面半径是2分米,高是5分米,体积是()。
2讨论:
(1)已知圆柱底面的半径和高,怎样求圆柱的体积V=兀r2×h
(2)已知圆柱底面的直径和高,怎样求圆柱的体积V=兀(d÷2)2×h
(3)已知圆柱底面的周长和高,怎样求圆柱的体积V=兀(C÷兀÷2)×h
3、练习:已知半径和高求体积,已知直径和高求体积。
四、小结或质疑
五、作业
课后做一做第1、2、3题。
板书设计:
圆柱的体积
长方体的体积=底面积x高
圆柱的体积=底面积x高
V=Sh
本节课的设计思考:
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。
不足之处:
在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的`课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。
三、教师的语言非常贫乏
在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。
苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。