高一数学下册的教学计划(通用6篇)

时间:2015-02-06 06:17:23
染雾
分享
WORD下载 PDF下载 投诉

高一数学下册的教学计划 篇一

在高一数学下册的教学计划中,我们将着重培养学生的数学思维和解决问题的能力。通过系统的教学安排和多样的教学方法,帮助学生建立坚实的数学基础,为将来的学习打下扎实的基础。

首先,我们将以数列和数学归纳法为切入点,引导学生深入理解数学归纳法的原理和应用。通过数列的定义、性质和求和公式的推导,帮助学生掌握数列的特点和规律,培养他们发现问题、分析问题、解决问题的能力。

其次,我们将注重培养学生的几何思维和空间想象能力。通过讲解平面几何图形的性质和计算方法,引导学生运用几何知识解决实际问题。同时,通过引入立体几何的概念和应用,激发学生对空间几何的兴趣,培养他们的空间想象能力和几何推理能力。

另外,我们将引入函数的概念和相关知识,帮助学生理解函数的定义、性质和图像。通过函数的应用问题,培养学生的数学建模能力和实际问题的解决能力。同时,我们将注重函数的综合运用,引导学生将函数知识与数列、几何等内容结合起来,拓展他们的数学思维和应用能力。

最后,我们将通过综合性的测试和实际应用题目,检验学生对数学知识的掌握程度和运用能力。同时,我们将安排一定的课外拓展活动,引导学生应用数学知识解决实际问题,培养他们的创新能力和团队合作精神。

在高一数学下册的教学计划中,我们将全面考虑学生的学习特点和需求,通过科学的教学安排和灵活的教学方法,帮助学生掌握数学知识,提高数学思维能力,为他们的学习和未来的发展打下坚实的基础。

高一数学下册的教学计划 篇二

高一数学下册的教学计划在教学目标的设计上,主要着眼于培养学生的数学思维能力、创新能力和解决问题的能力。通过合理的教学安排和多样的教学方法,帮助学生建立扎实的数学基础,激发他们对数学学习的兴趣和热情。

首先,我们将注重培养学生的逻辑思维和分析能力。通过引入集合论和命题逻辑的知识,帮助学生理解逻辑命题的构成和关系,培养他们的逻辑思维和推理能力。同时,通过逻辑推理题目的训练,提高学生的问题解决能力和思维敏捷度。

其次,我们将引入概率论的知识,培养学生的概率思维和统计能力。通过概率的定义、性质和应用,帮助学生理解概率事件的发生规律和计算方法,培养他们的概率思维和判断能力。同时,通过实际问题的概率分析和统计处理,引导学生将概率知识应用到生活和实际问题中。

另外,我们将注重培养学生的数学建模能力和实际问题的解决能力。通过引入微积分的知识,帮助学生理解导数和微分的概念、性质和应用,培养他们的微积分思维和分析能力。同时,通过微积分在实际问题中的应用,促进学生对数学建模和实际问题的解决方法的理解和掌握。

最后,我们将通过综合性的测试和实际问题的应用,检验学生对数学知识的掌握程度和运用能力。同时,我们将安排一定的课外拓展活动,引导学生应用数学知识解决实际问题,培养他们的创新能力和团队合作精神。

在高一数学下册的教学计划中,我们将全面考虑学生的学习特点和需求,通过科学的教学安排和灵活的教学方法,帮助学生掌握数学知识,提高数学思维能力,为他们的学习和未来的发展打下坚实的基础。

高一数学下册的教学计划 篇三

  一、教材依据

  本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1、2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:

  (1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解截距与距离的区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1、教学方法的选择:启发、引导、讨论。

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

  2、通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②分组讨论。

高一数学下册的教学计划 篇四

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6、具有一定的'数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(B版)》,它体现基础性,时代性,典型性和可接受性等,具有如下特点:

  1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归,合作学习等方法,尽可能养成其逻辑思维的习惯。

  四、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

高一数学下册的教学计划 篇五

  一、指导思想

  以学校年工作计划为指导,以贯彻新课程理念,推动课程改革为中心,认真落实教育教学工作精神。以培养学生创新精神和实践能力、发展学生个性为目标,开展教学改革实验,探索学科教学新模式,开展校本的教学特点,不断提高自身素质。狠抓数学教育,推进我校数学教育的发展。

  二、基本情况分析

  1、183班共54人,男生25人,女生29人;本班相对而言,数学尖子生约4人,中上等生约36人,差生约14人。

  2、184班共54人,男生23人,女生31人;本班相对而言,数学尖子生约5人,中上等生约34人,差生约15人。

  三、教材分析

  1、教材内容:数学必修三:统计、算法初步。数学必修四:三角函数、向量及其应用及和、差、倍、分三角公式及其应用。

  2、算法思想是现代人应具备的一种数学素养;统计与算法在现代生活中使用相当广泛;三角函数是中学数学的最重要的基本概念,它是描述周期现象的重要数学模型,在数学和其他的领域中有着重要的作用。是进一步学习高等数学的基础;向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,有着极其丰富的实际背景。

  1、教材重点:通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律问题中的作用。

  2、教材难点:使学生在学习三角恒等变化的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变化的工具性作用。

  3、教材关键:理解概念,熟练、牢固掌握三角函数的图像及性质;数形结合,灵活理解向量的含义及能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  4、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下一阶段的学习做准备。

  四、教学要求

  5、了解算法的初步知识和几个典型的算法案例;使学生体会算法的基本思想、基本特征。

  6、了解最基本的获取样本数据的方法,学会几种从样本数据中的提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。

  7、了解概率的含义、计算概率的方法及概率在实际中的应用。

  8、通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律问题中的作用。

  9、了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  10、使学生在学习三角恒等变化的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变化的工具性作用。

  五、教学措施

  1、抓好集体备课,确定本周所讲内容,共同分析每节的难点、重点,对于难点的分解每个人提出自己的教学方案,进行比较,找出学生易于掌握的一种。重点的着重点在哪里,找出典型例题,及其分析思路。

  2、教学案的设计和使用:确立本节课的教学目标和要求、教学重点难点、教学方法和手段、教学过程、小结反思、练习和板书设计等,要精心设计教学,不应停留在简单的变式和肤浅的问答形式上,而应把数学知识方法贯彻到每一次探索活动中去,使学生在“观察、联想、类比、归纳、猜想和证明”等一系列探究过程中,体验到成功的快乐,从而激发学生的创新欲望,体会到数学思想方法的作用。例题设计合理,贴合本节内容,能使学生易于掌握,设计问题层层递进,使学生能通过问题进行自学。

  3、作业设置:以课本为基础,注重当堂所讲内容的练习,进行分层设计,由易到难,慢慢递进,巩固基础,加宽深度,对于易错的题型在每天的作业中进行反馈练习,直到学生掌握为止。

  4、习题批改辅导:对作业进行全批全改,追对偏科生进行面批面改,加深学生的印象,及时进行总结,找出问题所在,设计新的试题,进行巩固。

高一数学下册的教学计划 篇六

  一、基本情况分析:

  1、学生情况分析:4个重点班的学生,基础比较好,学习积极性高。普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。

  2、教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。

  二、教学内容:

  本学期的数学教学内容是高一数学下册,包括第四章《三角函数》和第五章《平面向量》。按照数学教学大纲的要求,第四章教学需要36个课时(不包含考试与测验的时间);第五章的教学需要22个课时,共计需要58个课时。本学期有两次月考和五一长假,实际授课时间为18周,按每周6课时计算,数学课时达到110课时左右,时间相当充足。这为我们数学组全面贯彻“低切入、慢节奏”的教学方针提供了保障,也是我们提高学生数学水平的又一次极好的机会。

  三、本学期教学目标

  在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

  能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

  培养学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

  四、教学计划

  本学期的期中考试(预计在4月14号至4月17号进行)涵盖的内容为第四章的前9节,由于课时量充足,第10节“正切函数的图像和性质”以及第11节“已知三角函数值求角”将在上半学期讲授,这样下半个学期的教学任务为30个课时。

  我们备课组经过认真的思索、充分的讨论,将期中考试前的教学进度安排如下:

  (一单元)任意角的三角函数

  4.1角的概念的推广3课时

  4.2弧度制3课时

  4.3任意角的三角函数3~4课时

  4.4同角三角函数的基本关系4课时

  4.5正弦、余弦的诱导公式4课时

  复习课(习题课)4课时

  单元测试及讲评2课时

  (二单元)两角和与差的三角函数

  4.6两角和与差的正弦、余弦、正切7课时

  习题课3课时

  4.7两倍角的正弦、余弦、正切4课时

  习题课2课时

  单元测试及讲评2课时

  (三单元)三角函数的图象及性质

  4.8正弦、余弦函数的图象和性质5课时

  习题课2课时

  4.9函数的图象4课时总计授课53课时,余下课时可安排期中复习。

  期中考试后的授课计划:

  4.10正切函数的图象和性质3课时

  4.11已知三角函数值求角4课时

  习题课2课时

  第四章复习4课时

  第五章

  (一单元)向量及其运算

  5.1向量1课时

  5.2向量的加减法2课时

  5.3实数与向量的积3课时

  5.4平面向量的坐标计算3课时

  5.5线段的定比分点2课时

  5.6平面向量的数量积及运算律3课时

  5.7平面向量数量积的坐标表示2课时

  5.8平移2课时

  习题课3课时

  单元测试与讲评(随堂)2课时

  5.9正弦、余弦定理5课时

  5.10解斜三角形应用举例2课时

  实习与研究性课题4课时

  习题课3课时

  单元测试与讲评2课时

  总结:以上就是本学期的数学教学计划,希望能对你有所帮助,如有不足之处,请批评指正!

高一数学下册的教学计划(通用6篇)

手机扫码分享

Top