汽车凸轮轴加工工艺分析【实用3篇】

时间:2015-01-09 05:18:48
染雾
分享
WORD下载 PDF下载 投诉

汽车凸轮轴加工工艺分析 篇一

汽车凸轮轴是发动机中非常关键的零部件,它通过凸轮的形状来控制气门的开合时间和行程,影响着发动机的性能和燃烧效率。因此,凸轮轴的加工工艺对于发动机的工作效率和性能至关重要。

在汽车凸轮轴的加工过程中,首先需要选择合适的材料。一般来说,凸轮轴需要具有较高的硬度和强度,以承受高速旋转和高温高压的工作环境。常用的材料包括碳素钢、合金钢和铸铁等。不同的材料会影响加工难度和成本,需要根据具体情况进行选择。

其次,凸轮轴的加工过程包括车削、磨削、热处理和抛光等工序。车削是将原材料表面进行粗加工,使其形成初步的凸轮形状;磨削则是对凸轮轴进行精密加工,提高其表面质量和凸轮的精度;热处理是对凸轮轴进行淬火、回火等热处理工艺,提高其硬度和耐磨性;最后是抛光工序,使凸轮轴表面光滑,减少摩擦阻力。

在凸轮轴加工过程中,需要注意的是加工精度和表面质量的控制。凸轮的形状和尺寸对发动机性能有着直接影响,因此加工精度要求非常高,通常在几十微米以下。同时,凸轮轴表面的质量也会直接影响到气门的工作效率,因此需要进行精细的抛光和表面处理,以保证表面光滑度和清洁度。

综上所述,汽车凸轮轴的加工工艺是一个复杂而关键的过程,需要严格控制材料选择、加工工序和加工精度,以确保凸轮轴的质量和性能。只有通过科学的工艺流程和严格的质量控制,才能生产出符合要求的凸轮轴,为发动机的正常工作提供保障。

汽车凸轮轴加工工艺分析 篇二

随着汽车工业的不断发展,汽车凸轮轴作为发动机中至关重要的零部件,其加工工艺也在不断创新和完善。在传统的凸轮轴加工工艺基础上,现代汽车凸轮轴加工工艺已经实现了数字化、自动化和智能化的发展。

数字化技术在汽车凸轮轴加工中的应用主要体现在加工工艺的设计和仿真。通过CAD/CAM软件,可以实现对凸轮轴的三维建模和工艺设计,优化加工路径和刀具选择,提高加工效率和精度。同时,通过仿真软件,可以对加工过程进行模拟和分析,预测潜在的加工问题和缺陷,确保加工质量和稳定性。

自动化技术在汽车凸轮轴加工中的应用主要体现在加工设备和生产线的自动化。现代汽车凸轮轴加工生产线通常采用数控机床和机器人等设备,实现对凸轮轴的自动化加工和装配。通过自动化设备的应用,可以提高生产效率、降低生产成本,同时减少人为因素对产品质量的影响,提高加工精度和稳定性。

智能化技术在汽车凸轮轴加工中的应用主要体现在生产过程的监控和控制。通过传感器和数据采集系统,可以实时监测加工过程中各项参数的变化,及时调整工艺参数和设备设置,保证加工质量和稳定性。同时,通过物联网技术,可以实现对生产线的远程监控和管理,提高生产效率和管理水平。

综上所述,现代汽车凸轮轴加工工艺已经实现了数字化、自动化和智能化的发展,为提高生产效率、加工质量和产品性能提供了有力支持。未来随着技术的不断进步和创新,相信汽车凸轮轴加工工艺将会迎来更加美好的发展前景。

汽车凸轮轴加工工艺分析 篇三

内容摘要

凸轮轴作为汽车发动机配气机构中的关键部件,其性能直接影响着发动机整体性能。因此凸轮轴的加工工艺有特殊要求,合理的加工工艺对于降低加工成本、减少生产环节以及合理布置凸轮轴生产线具有很大的现实意义。

本文针对凸轮轴的加工特点,结合工厂的实际,从前期规划开始,对凸轮轴的加工工艺进行了深入的分析、研究。建立了用数控无靠模方法。对凸轮廓形进行计算和推倒,对凸轮轮廓的加工进行了探讨并提出适用于发动机凸轮轴的加工方法。

关键词:发动机;凸轮轴;工艺分析

目 录

一、引言 .................................................................... 3 (一)汽车发动机行业的发展状况 .............................................. 3 (二)凸轮轴的性能要求 ...................................................... 3 (三)本文研究内容 .......................................................... 5

二、凸轮轴生产线前期规划 ............................................ 5

(一)产品规格 .............................................................. 5 (二)工艺设计原则及凸轮轴加工工艺分析 ...................................... 6 (三)小结 .................................................................. 7

三、凸轮轴生产线工艺分析 ............................................ 7

(一)生产线布置 ........................................... 错误!未定义书签。 (二)工艺设计 .............................................................. 7 (三)工艺分析 .............................................................. 9 (四)工艺特点 ............................................................. 10 (五)工艺难点 ............................................................. 13

四、凸轮廓形理论计算及加工控制参数 ............................. 14

(一)凸轮轴凸轮的廓形要求 ................................................. 14 (二)包络线理论 ........................................................... 16 (三)凸轮廓形坐标 ......................................................... 17

五、总结 .................................................................. 参考文献 .................................................................. 致谢 ........................................................................

汽车凸轮轴加工工艺设计

学生姓名:孟德宏 指导老师:郭小凯

一、引言

(一)汽车发动机行业的发展状况

现代汽车发动机行业的发展十分迅速,这种趋势要求各发动机厂家不仅要具有大批量生产的能力,也同时要具有小批量、多品种的生产技术。所以,在汽车发动机厂家现在已经普及了互换性、自动化生产,做到了流水线式生产线布置及工艺安排,实现了按节拍生产。辅助时间包括上料、输送、检验时间,而机加工时间则是指从夹具定位、夹紧到机加工完成,夹具松开并推出工件这段时间。

除按节拍生产以外,我国的发动机生产厂家多数采用流水线布置。生产线分为半自动生产线与全自动生产线两种形式。半自动生产线与全自动生产线的区别在于前者靠人工在工序间输送工件,而后者则实现了无人操作、输送、加工及检验全部实现自动化。全自动生产线虽然自动化程度高,质量稳定、可靠,但是投资巨大,成本太高,而我们国家人力资源丰富,人工价格偏低,所以大部分发动机生产厂家采用半自动生产线与局部全自动化生产线相结合的方式布置生产线,在保证生产节拍和产品质量的前提下,尽可能的降低产品的成本。

此外,在各种发动机的零部件的设计及生产上均采用了一些先进的形式及工艺。例如多气缸多气门的设计,从直列三缸到V型双列十二缸,从二气门到四气门、五气门。多气门的布置可以增加充气效率,便于阻止缸内气流压力。顶置式凸轮轴设计,精密加工,柔性生产,在线自动测量及自动补偿等等,这些都为机加工生产及工艺安排增加了难度,向技术人员提出了更高的要求。

人们对发动机的性能要求概括为以下几点:⑴高的动力性能。⑵高的燃料经济性。⑶高的工作可靠性和足够的使用寿命。⑷结构紧凑,外形小,重量轻。⑸高的环境性能,低排放,低消耗,低污染。尤其是最后一点,在近些年中得到很大的关注。由于发动机性能指标的不断提高,其加工精度、难度也不断增加,所以在发动机行业中,数控机床,精密加工机床,加工中心,自动生产线,成组技术等先进设备及技术都得到了广泛的普及。 (二)凸轮轴的性能要求

在汽车发动机的各个零件及机构中,配气机构是非常重要的,配气机构必须根据发动机气缸内所发生的工作过程,保证正确地打开和关闭气门。而凸轮轴是配气机构中最重要、

最关键的零件,它决定着气门的升程曲线和气门开关时刻,从而直接影响发动机的进排气量,影响发动机的动力性、经济性和排放。

发动机行业现在都采用气门顶置式配气机构,其主要原因是由于顶置式配气机构的发动机能选用较高的压缩比。其气门可以设计的比较大,混合气进入和废气排出的必经路程又比较短,因而顶置气门式发动机的容积效率比较高。另外,顶置气门式发动机燃烧室的S/V比值较小(S/V比值是燃烧室的表面积S和燃烧室的容积V之比),这样,不仅废气中未燃碳氢化合物的含量较少,而且发动机的热效率也较高,这在排放标准日益提高的今天是非常重要的。

在顶置气门式配气机构中,除通常采用挺杆、推杆和摇臂控制气门的形式外,还有采用顶置凸轮轴(SOHC)的。在顶置凸轮轴的发动机中,凸轮轴置于气缸盖上,凸轮直接作用于摇臂或者挺杆来控制气门。除单顶置凸轮轴外,还有双顶置凸轮轴(DOHC)的,其中一根凸轮轴操纵进气门,另一根控制排气门。

这种单顶置凸轮轴发动机,由于没有推杆和挺杆,因而减小了配气机构的惯性力,减少了气门产成颤动的倾向,同时也减少了系统的变形量。而且这种单顶置凸轮轴发动机还有一个优点,由于运动质量小,凸轮轮廓可以设计的比较陡一些,可以使气门能够更快的打开和关闭,保持更多的时间停留在全开的位置上,改善发动机的换气,提高容积的效率,这样可提高发动机的性能,特别是高速下的性能。

由于发动机的发展趋势为多气缸多气门设计,而每一个气门的进气与排气都必须由凸轮轴上的凸轮外形控制。所以凸轮轴的发展趋势是一个凸轮轴上排列着越来越多的凸轮,如果是三缸以下的发动机,不论是两气门还是四气门,排气凸轮与进气凸轮还可以排在一根凸轮轴上。如果是四缸以上,则必须配备两根凸轮轴,其中一根凸轮轴控制进气门,另一根控制排气门。

凸轮轴是内燃机配气系统中关键的零件之一,整个配气机构是由凸轮轴驱动的,凸轮的设计对整个配气系统的性能起着决定性的作用。凸轮轴刚性差、易变形;精度高,加工难度大;因此,对于凸轮轴的设计、加工、选材、加工工艺等都提出了许多要求。其主要的技术要求如表1.1表述。

表1.1 凸轮轴的技术要求

主要项目

尺寸(mm) 表面粗糙度(μm)

圆柱度(mm)

凸轮轴表面粗糙度(mm)

中间轴颈相对于两端轴颈的跳动(mm)

相邻两轴颈的径向跳动(mm)

凸轮轴对称中心平面对正时齿轮键槽中心平面

或定位销轴线的角度偏差(′) (三)本文研究内容

支撑轴承

一般性要求 IT5~IT6

RZ0.4

5级精度

RZ0.4

0.06 0.02 ±30′

随着汽车行业的不断发展,再加上配件的需求,使得凸轮轴的需求量一直高居不下。建立一条集先进性与经济性为一体的凸轮轴生产线是非常必要的。面对国外汽车行业的冲击,我们国产汽车业应该加紧研究、建立符合中国国情的,我们自己的基础制造业,提高质量、降低成本,这样才能保住我们国产汽车的市场。

凸轮轴在发动机中的重要地位决定了国内发动机生产厂家都建有自己的凸轮轴生产线,这样可以在保证整机质量的前提下,尽可能的降低成本,提高竞争力。

本文主要围绕汽车凸轮轴生产线的工艺分析,从前期准备、工艺设计、理论计算、生产实践、和产品检测这几个方面,阐述了凸轮轴加工的一整套设计思路和方法,对发动机制造业中的零部件加工具有重要的参考作用。

二、凸轮轴生产前期规划

(一)产品规格 2.1.1零件的结构特点

凸轮轴生产线承每台发动机凸轮轴的机加工,每台发动机上使用一根凸轮轴。 材料:(FCA-3)铜铬钼合金铸铁,各主轴颈及端面的硬度HB180~240,凸轮HRC48. 2.1.2凸轮轴简图

图1

2.1.3 发动机凸轮轴主要加工内容和精度要求

(1)支承轴径

0.0150.02

前轴径前端φ32-,后端φ32-,表面粗糙度Rz3.2 -0.045-0.04

0.09中间轴径φ47.5-,表面粗糙度Rz3.2 -0.115

0.06后轴径φ48.5-,表面粗糙度Rz3.2 -0.085

(2)凸轮

0.056个凸轮基圆尺寸为φ16.7+,表面粗糙度Rz3.2。 -0.05

各凸轮基圆相对与前后轴颈的基准轴线的径向跳动允差0.03mm 各凸轮基圆相对与前后轴颈的基准轴线的平行度允差0.01mm

各凸轮对称中心线相对于键槽的相对位置偏差(相位角)±20′(见图1) 凸轮型线误差作用段±0.05mm 凸轮型线误差作用段±0.02mm

一缸凸轮轴对键槽位置112°32′±20′ (3)斜齿轮

齿数:13,螺旋角:53°(右)±1′46"公法线长度:38.611~38.806 齿形误差≤0.025;齿向误差≤0.017;齿槽对键槽的角度20°±2° (4)键槽

宽4-0.05,深3.5+0.2,对称度0.025 2.2工艺设计原则及凸轮轴加工工艺分析

(1)保证工艺具有合理的先进性,再保证节拍的基础上,吸收先进技术提高产品的竞争力。 (2)对于关键设备和技术,优先考虑国内外可靠厂家的先进设备。 (3)保证先进性与经济性相结合,再保证产品质量的前提下,降低成本 (4)充分考虑各生产缓解的安全性和操作的方便性。 (5)在投资允许的情况下,尽量考虑柔性生产。

由于凸轮轴具有细长http://www.wEnku1.com且形状复杂的结构特点,技术要求又高,尤其是凸轮的加工,因此其加工工艺性较差。在凸轮轴的加工过程中,有两个主要因素影响其加工精度。其一是易变形性,其二是加工难度大。 2.2.1易变形特性

从细长轴的角度来说,突出的问题就是工件本身的刚度低,切削加工时会产生较大的受力变形,其表面残余应力也会引起变形。尤其是在加工凸轮和齿轮时,这种变形会更为

显著。

凸轮轴在加工过程中的变形,不仅影响到后续工序加工中的余量分配是否均匀,而且变形过大会导致后序加工无法进行,甚至造成中途报废。凸轮轴加工后的变形,将直接影响到装配后凸轮轴的使用性能[2]。

因此,在安排其工艺过程时,必须针对工件易变形这一特点采取必要的措施。不仅要把各主要表面的粗精加工工序分开,以使粗加工时产生的变形在精加工中得到修整,半精加工中产生的变形在精加工中得到修正,还必须在加工过程中增设辅助支承以采取分段加工等措施,这是保证凸轮轴加工精度所必须解决的问题。 2.2.2加工难度大

从形状复杂的角度来说,突出的问题凸轮、齿轮这些复杂表面的加工。对于这些表面,不仅有尺寸精度要求,还有形状、位置精度要求,如采用普通的加工设备和一般表面常规加工方法,显然是根本无法保证其加工质量和精度的。

例如对于凸轮的加工,从满足使用要求的角度来说,既要求其相位角准确又要求凸轮曲线升程满足气门开启和关闭时升降过程的运动规律,但注意到凸轮曲线上的各点相对其回转中心的半径是变化的,当选用一般的靠模机床加工时,由于加工半径的变化,势必引起切削速度和切削力的变化,加之工件旋转时的惯性力和靠模弹簧张力的瞬间变化,将会使加工后的凸轮曲线产生形状误差,即曲线的升程误差,从而直接影响凸轮轴的使用性能。 2.3小结

综上所述,虽然各种方案

都各有优点,但其技术的不成熟或者成本问题,都成为在国内实施的困难。考虑到成本及大批量生产,选择成熟技术和成熟的设备,使工艺方案符合经济性与合理性原则。

三、 凸轮轴工艺分析

3.1工艺设计

3.1.1定位基准的选择

对于一般的轴类零件来说,其轴线即为它的设计基准。发动机凸轮轴遵循这一设计基准,由于凸轮轴各表面的加工难以在一次装夹中完成,因此,减小工件在多次装夹中的'定位误差,就成为保证凸轮轴加工精度的关键。本文采用两顶尖孔作为轴类零件的定位基准,这不仅避免了工件在多次装夹中因定位基准的转换而引起的定位误差,也可作为后续工序的定位基准,即符合“基准统一”原则。

这种方法不仅使工件的装夹方便、可靠。简化了工艺规程的制定工作,使各工序所使

用的夹具结构相同或相近,从而减少了设计、制造夹具的时间和费用,而且有可能在一次装夹中加工出更多表面。这对于大量生产来说,不仅便于采用高效专用机床和设备以提高生产效率,而且也使得所加工的各表面之间具有较高的相互位置精度。 3.1.2加工阶段的划分与工序顺序的安排 (一)加工阶段的划分

由于凸轮轴的加工精度较高,整个加工不可能在一个工序内全不完成。为了利于逐步地达到加工要求,所以把整个工艺过程划分为三个阶段,以完成各个不同加工阶段的目的和任务。

发动机凸轮轴的加工的三个阶段:

(1) 粗加工阶段包括车各支承轴颈、齿轮外圆轴颈和粗磨凸轮。该阶段要求机床刚

性好,切削用量选择尽可能大,以便以提高生产率切除大部分加工余量。

(2) 半精加工是精车各支承轴颈和精磨齿轮外圆轴颈。该阶段主要为支承轴颈齿轮

的加工做准备。

(3) 精加工包括精磨各支承轴颈、止推面和凸轮以及斜齿轮加工。该阶段加工余量

和切削量小,加工精度高。

工艺编排:首先以φ32和φ48.5的毛坯面为定位基准,然后以大端外圆的端面作轴向定位,具体每序的定位基准和夹紧位置,见表3-1发动机凸轮轴生产工艺简介。 (二)工序顺序的安排

加工顺序的安排与零件的质量要求有关,工序安排是否合理,对于凸轮轴加工质量、生产率和经济性都有很大影响。对于各支承轴颈是按粗车——精车——精磨加工的,对于是按凸轮粗磨——精磨加工的,对于斜齿轮是按粗车——精车——精磨——滚齿加工的。各表面的加工顺序按从粗到精、且主要表面与次要表面的加工工序相互交叉进行,从整体上说,符合“先粗后精”的加工原则。 3.1.3凸轮形面的加工

在凸轮轴的加工中,最重要同时难度最大的是凸轮形面的加工。该形面的加工方法目前主要有车削和磨削两种。

凸轮形面的粗加工目前在国内主要是凸轮轴车床车削加工,也有采用铣削加工和磨削加工的。如采用双靠模凸轮轴磨床,机床有两套靠模,当砂轮直径在一定范围内时,使用第一个靠模来工作。当砂轮磨损到一定程度时,靠模自动转换,使用第二个靠模来工作[4]。该磨床通过对砂轮直径的控制来提高凸轮外形的精度,不仅提高了凸轮形面的加工精度,

发动机凸轮轴毛坯采用精铸的方法制造,毛坯精度较高,切削量小,故采用磨削的加工工艺,简化了凸轮形面的加工。凸轮形面的加工采用磨削的方法,在凸轮磨床上完成粗磨及精磨的加工。工件安装在两顶尖之间并以键槽做轴向定位,在支承轴颈处安装辅助支承保证凸轮形面的加工精度。发动机凸轮轴形面的加工所采用的凸轮轴磨床是立方氮化硼磨床,该磨床能迅速地变换磨削的凸轮形状,超过一般仿珩磨的生产率。机床具有较大的刚度,能承受大的工作负也使砂轮的利用更经济、合理。荷。由于立方氮化硼(CBN)砂轮的使用寿命高,因此,砂轮的直径变化所造成的凸轮形状误差显著减小,也大大提高了凸轮形面的磨削精度。 3.2工艺分析

表3.1发动机凸轮轴生产工艺简介

工序号 工

序内容

铣端面,打中10 心孔

夹紧位置

φ52.5外圆V2(成活尺寸φ

48.5) φ52.5外

φ36外圆V2(成活尺寸φ32)

φ36外圆

φ52.5端面V1

定位基准

备注 专机

20

粗车主轴颈

φ37.5外圆V1(成活尺寸φ

37.2) 两端中心孔V4

φ37.5外

圆 φ37.5外

半自动液压仿形车床

30

车削主轴颈并切槽

φ37.5外圆V1 两端中心孔V4

半自动液压仿形车床

40

φ48.9外圆V2(成活尺寸φ

两端螺孔钻、48.5) φ48.9外扩、攻丝、修圆

φ32.4外圆V(成活尺寸φ32) 2

中心孔 φ32.4外

φ52.5端面V1

大端外圆磨削

前轴颈磨削

两端中心孔V1 φ37.5外圆V1 两端中心孔V4

φ37.5外

圆 φ37.5外

专机

50

半自动端面外圆磨床

60

CNC磨床

φ37.5外圆V圆 1

中间轴颈、后

70

轴颈及推力两端中心孔V4 φ32外圆

CNC磨床

部端面磨削 φ32外圆V1 φ48.5外圆V2 80

铣键槽

φ32外圆V2 φ48.5外专机

φ30端面V圆φ32外

1 圆

角向90°V1

两端中心孔V4

90

粗磨凸轮(靠

φ22外圆

凸轮磨床

磨)

键V1 卡盘V1

φ30端面V1

100

精磨凸轮(无φ22外圆

凸轮磨床

靠磨)

两端中心孔V2

键V1

φ30端面V3

120

滚齿

两端中心孔Vφ22外圆

2

键V1

130

清洗

φ30与1IN之间非加工面V2 无夹紧

φ31与3EX之间非加工面V2

3.3工艺特点

发动机凸轮轴工艺特点:

(1) 毛坯硬度高 (冷激区HRC45 非冷激区HB229~302) (2) 生产节拍 1.75分钟

(3) 轮轴数控车床用于支撑轴颈的粗加工 (4) 凸轮部分在铸造时冷激,不需加工后淬火

(5) 凸轮采用粗、精磨加工,以磨代车,凸轮轮廓直接磨削 (6) 凸轮精加工采用全数控无靠磨磨削

(7) 加工中主要定位基准中心孔采用打孔后修磨,保证加工质量 工艺先进性分析:

1)磨削密集型工艺-外圆、轴颈、端面及凸轮均采用磨削方法[5]

凸轮的外圆、轴颈、端面及凸轮的粗精加工均采用磨削方法。凸轮传统的粗加工方法是采用靠模车床及液压仿形凸轮铣床,大量生产的凸轮轴毛坯均采用精锻或精铸成形,其毛坯精度高,加工余量小,采用以磨代车的新工艺,极大的简化了凸轮形面的加工。同时,高速磨削及金刚石滚轮连续修整工艺,保证了其生产效率及产品的质量。 2)凸轮采用数控无靠模磨削

长期以来,凸轮轴磨床采用靠模,滚轮摆动仿形机构,典型的设备如日平-兰迪斯SCAM-R型凸轮磨床。靠模凸轮机构摆动工作台凸轮轴磨床,在磨削中存在着一系列的加工缺陷,而采用数控凸轮磨削的新工艺,取消了靠模,完全靠CNC控制获得精密的凸轮轮廓,同时工件无级变速旋转,并采用CBN砂轮加工凸轮轴,从根本上解决了传统凸轮磨床的缺陷,不仅摆脱了靠模精度对凸轮精度的影响,而且砂轮的磨损不影响加工精度。同时,由于这种工艺具有较好的柔性,为以后的产品改进、更新以及多品种的凸轮轴共线生产提供了保证。

3)凸轮轴支撑轴颈的磨削

凸轮轴支撑轴颈的加工尺寸与精度如图2所示。采用数控多砂轮磨削,可以高效率地磨削凸轮轴支撑轴颈,加工出的轴颈具有较高的圆柱度和较小的径向跳动。同时数控磨削可以运用在线检测技术,对零件的加工部位尺寸进行监控,并把对砂轮的自动修整数据反馈给数控系统,来控制砂轮的补偿,确保加工部位的尺寸。

4)采用立方氮化硼(CBN)砂轮磨削

由于采用了无靠模数控凸轮磨床,所以整个凸轮轮廓(包括基圆、缓冲段、作用段)的磨削均由X轴即砂轮架和C轴即主轴的相对旋转运动完成,其动作为同步动作,所以凸轮磨削过程中砂轮于工件接触表面不同且不均匀,缓冲段及作用段接触面积大于基圆,由此造成加工余量不均匀,缓冲段和作用段加工余量大于基圆,故产生法向切削力的变化。另一特点为砂轮磨削过程中接触点(磨削点)与工件及砂轮二者中心线不在一条直线上,而是在上下移动,故易产生升程误差,也可能在缓冲段及作用段表面产生横纹。这一特点要求砂轮直径较小。

根据以上特点决定,选用陶瓷结合剂的立方氮化硼(CBN)砂轮磨削凸轮。砂轮转速为5700转/分,属于高速磨削,生产率高,耐用度高。CBN砂轮有较好的热导性,工件磨削的温度低,可减少磨削时的烧伤、裂纹和热损现象,与普通的砂轮相比,具有砂轮使用寿命长,更换砂轮和修整砂轮时间短,能提高工件的疲劳强度和耐磨强性等优点。

由于使用了CBN砂轮,砂轮直径有单晶刚玉的φ600mm减少到现在的φ250mm,且使用寿命长,CBN砂轮的CBN层厚度为3mm,每100件修磨一次,每次修磨量为0.01mm,一片砂轮的修磨次数为300次,可计算得出一片砂轮的理论加工工件数为300?100=30000件。且工件的粗糙度及凸轮升程均能很好的满足工艺要求。 5)毛坯材料为冷激合金铸铁

凸轮轴是气门机构的驱动元件,它的凸轮不仅要有合理的形状,而且要求表面耐磨,能在长期使用中基本保持设计给出的合理形状。所以对凸轮轴的材料要求比较高。尤其凸轮表面与摇臂之间是一对运动的摩擦表面,凸轮轴的材料必须保证其工作可靠性和耐久性。

最后决定采用冷激合金铸铁,即在凸轮轴铸模的凸轮尖端处放一块加速铁水冷却的铁块,使凸轮尖端迅速冷却,形成桃尖硬化层,其主要金属基体为菜氏体,可以提高其硬度,并达到工艺要求:凸轮140°以内HRC35以上,30°以内HRC48以上,如图3所示。这样凸轮外形完全用磨削加工。

°

°

图3凸轮外形硬度分布图

铸铁凸轮存在摩擦系数仅为0.15~0.20,而强度很低的石墨,在摩擦过程中会脱落于接触处成为润滑剂,且石墨脱落后留下的孔穴又会成为绝好的储油槽,使临界油膜容易保持住。铸铁的导热性大且不留加工余量,而凸轮工作表面只留1.5mm左右的磨削余量。

因为凸轮轴转速低,载荷轻,润滑又良好,而铸铁本身也是一种良好的轴承材料,所以不用衬套,把凸轮轴直接装入缸盖凸轮轴孔中。采用冷激铸铁,工艺简单且成本低,激冷用外冷铁可由我单位生产,反复使用近百次后可作为返回料入炉,所以生产工序简单,并可以大幅度提高耐磨性。 3.4工艺难点

3.6.1主轴颈粗糙度的保证

凸轮轴生产的难点是主轴颈的粗糙度达不到图纸的要求,图纸要求为Rz3.2,实际加工情况为Rz≤5.2,这就给验证带来了很多麻烦。

根据实际情况,首先通过改变机床的切削用量,把机床规定好的切削用量彻底改变,一组一组的数据进行试验,最终结果还是不好。最后在保证砂轮不变的情况下,改变金刚石修整器的修磨速度F,修整量μ,来提高工件的粗糙度。通过反复试验,得出几组比较好的数据。

μ=0.08 F30 Rz=2.66Z~3.79Z μ=0.04 F15 Rz=2.50Z~3.50Z μ=0.06 F30 Rz=2.60Z~3.66Z μ=0.04 F35 Rz=2.00Z~3.20Z

通过比较,决定选用μ=0.04,F30这组数据,磨5个工件修整一次,粗糙度<3.2Z。 3.6.2轴颈夹痕

1)轴颈夹痕:凸轮轴线120序凸轮磨削时用键槽定位,φ22外圆夹紧。三爪长期使用造成φ22外圆上由三个光亮带,粗糙度合格。

该凸轮磨床在设备验收时即有光亮带夹痕存在,据了解目前凸轮桃子磨削工艺大多采用腱槽角向定位三爪夹紧工件小端外圆,中心架支撑轴径向表面来完成磨削过程,此方案势必要产生夹痕。该工艺丰田汽发,一汽大众均采用,新产品1SZ凸轮轴从外观看也采用此加工工艺加工的。此工艺方案可继续使用。

2)彻底消除夹痕工艺的近一步探讨:采用倒序加工的方法,先磨桃子,后磨小端外圆。 a)使用这种方法,涉及变动的部分:凸轮磨改三爪、中心架。键槽铣床改定位块、量验具工艺尺寸链重新计算,改所有工艺文件。

b)引发的质量问题:由于凸轮磨床的中心架支撑轴颈是精车表面,对凸轮磨削精度和升程曲线会造成很大的影响。由于磨小端外圆与铣键槽定位基准不统一,会对键槽对称度造成很大的影响。

c)抛光小端外圆,需要增加投入。该方案没有必要。

3)结论:轻微夹痕对发动机性能无影响,没必要增加投入。装工件时键槽尽量放在夹具的驱动键槽位置,以免驱动键槽转动时,划伤加工表面。

四、 凸轮廓形理论计算及加工控制参数

4.1凸轮轴凸轮的廓形要求

气门运动的加速度和减速度都是凸轮轮廓的函数。发动机的凸轮轴凸轮轮廓如图4所示,主要包括进气段C(开启弧)、排气段E(关闭弧)、缓冲段B、缓冲段C、基圆A、顶弧D。

发动机凸轮轴的凸轮廓形是以凸轮与φ10滚珠对滚时二者中心距离y1,y2表示的,如图5,图纸给出表列函数y1=f1(φ),y=f2 (φ)表4—1为凸轮轴升程表。

图4凸轮轮廓图

4.1.1凸轮升程数据

1)从动件半径(mm):设定从动件半径,用来轮廓计算和测定。

2)凸轮基圆直径(mm):设定凸轮基圆直径,可以用此数据微调凸轮尺寸,因为没有凸轮的长径尺寸。

3)角度升程值(mm/deg):以凸轮顶点转180为0,只输入有增量的两个角度之间(90

270)的增量数据,每隔1进行设定(机内密化系统),最后制成升程表[7]。

表4-1凸轮轴凸轮升程表

φ

φ

φ

0 28.387 28.387 41 22.580 24.302 82 21.722 21.865 1 28.384 28.384 42 22.497 24.149 83 21.715 21.855 2 28.375 28.375 43 22.422 24.000 84 21.710 21.846 3 28.359 28.261 44 22.353 23.855 85 21.706 21.837 4 28.337 28.341 45 22.292 23.714 86 21.703 21.827 5 28.307 28.315 46 22.237 23.578 87 21.701 21.818 6 28.271 28.285 47 22.188 23.447 88 21.808 21.808 7 28.226 28.249 48 22.145 23.322 89 21.799 21.799 8 28.173 28.208 49 22.108 23.202 90 21.789 21.789 9 28.112 28.162 50 22.077 23.087 91 21.780 21.780 10 28.040 28.111 51 22.049 22.979 92 21.771 21.771 11 27.958 28.054 52 22.027 22.876 93 21.761 21.761 12 27.864 27.993 53 22.007 22.779 94 21.752 21.752 13 27.757 27.927 54 21.992 22.689 95 21.742 21.742 14 27.634 27.856 55 21.979 22.604 96 21.733 21.733 15 27.492 27.780 56 21.968 22.525 97 21.725 21.725 16 27.327 27.699 57 21.958 22.453 98 21.718 21.718 17 27.133 27.613 58 21.949 22.386 99 21.713 21.713 18 26.907 27.522 59 21.939 22.325 100 21.708 21.708 19 26.657 27.426 60 21.930 22.270 101 21.704 21.704 20 26.395 27.326 61 21.920 22.220 102 21.702 21.702 21 26.129 27.220 62 21.911 22.175 103 21.700 21.700 22 25.865 27.109 63 21.901 22.136 23 25.606 26.993 64 21.891 22.102 24 25.355 26.872 65 21.882 22.072 25 25.113 26.746 66 21.872 22.046 26 24.881 26.616 67 21.863 22.025 27 24.659 26.480 68 21.853 22.006 28 24.447 26.340 69 21.843 21.991 29 24.245 26.196 70 21.834 21.979 30 24.054 26.048 71 21.824 21.968 31 23.873 25.896 72 21.825 21.959 32 23.702 25.741 73 21.8058 21.949 33 23.542 25.583 74 21.795 21.940 34 23.390 25.423 75 21.786 21.930 35 23.248 25.262 76 21.776 21.921 36 23.115 25.100 77 21.766 21.912 37 22.992 24.938 78 21.757 21.902 38 22.876 24.776 79 21.747 21.893

39 40 22.770 24.616 80 22.671 24.458 81 21.738 21.884 21.729 21.874

由于在升程段廓形圆形滚珠与廓形的切点D1,D2都不在滚珠与凸轮的连心线上,而磨床砂轮必须磨出D1,D2点来,它的半径又远远大于滚珠半径,所以必须通过计算得出凸轮廓形(D1,D2)坐标,再换算成砂轮中心的坐标,作为磨床砂轮横向进给的依据。 4.2包络线理论

设想凸轮不转,滚柱回绕凸轮旋转,则滚柱外形形成一个圆的曲线族,凸轮廓形实际是它的内包络线。以H表示滚柱与凸轮轴心距,则H=f(?),以fR为滚柱半径,则圆的一般方程为:

(X-Hcos?)+(Y-Hsin?)=Rr

2

2

2

因为H也是?的函数,此式可写成隐函数形式f(x,y,?)=0,这里?为参变量,改变?值可得不同的方程式,如图6。

dydx

??f? ??x????f? ?y????

=-

还可以进一步写作:

?f

?+?=0 (4.1)

?xd??yd?

dx

?f

dy

包络线既与曲线族相切,其上各点应与曲线族上各切点斜率相等,故也应满足公式(4.1)。

曲线族方程f(x,y,?)=0的全微分为:

df=

?f?x

dx+

?f?y

dy+

?f??

d?=0

即:

?f?x

dx+

?f?y

dy+

?f??

d?=0 (4.2)

包络线上各点既是曲线族里的点,其斜率又应满足公式(4.1),将(4.1)、(4.2)式联立,可得:

?f??

=0 即包络线方程,解此式得出以?表示得x、y值,即包络线上的各点坐标[8]

。4.3凸轮廓形坐标

滚柱曲线族方程的隐函数形式

(X-Hcos?)2

+(Y-Hsin?)2

-R2

r=0

将此式对?微分后使

?f??

=0

解出x、y值为

x=Hco?s±

Rf

? Hsi?

n-dH?co?s?

?1+

d??

Hco?s+

dH

??si?n??d???

x?? H?sin?-dH?cos???d?+H?H

y=

?d??

d? H?cos?+d

Hd?sin?

?

由于求曲线族的内包络线,故式(4.4)中正负号应取负号。 计算中微分

dHd以差分代替,即表列函数中若Hn对应于?n,则取

?

dH=

Hn+1-Hn-1

d?

?n+1-?

n-1

表4.2为C语言编程计算凸轮轴y1、y2两面的坐标值为XD、YD

(4.3)

(4.4)

(4.5)

表4-2 凸轮轴y1、y2两面的坐标值XD、YD

φ

Xn

Yn

φ

Xn

Yn

φ

Xn

Yn

φ

Xn

Yn

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 23.382 23.367 23.341 23.305 23.258 23.203 23.138 23.061 22.977 22.885 22.783 22.676 22.565 22.455 22.350 22.311 22.151 21.987 21.847 21.577 21.258 20.909 20.541 20.162 19.779 0.348 0.690 1.031 1.367 1.700 2.027 2.342 2.660 2.959 3.246 3.525 3.785 4.024 4.411 4.234 4.477 4.651 4.848 4.973 5.208 5.469 5.745 6.027 6.313 6.599 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 10.702 10.420 10.137 9.868 9.603 9.341 9.088 8.831 8.573 8.312 8.050 7.790 7.517 7.248 6.977 6.704 6.435 6.153 5.875 5.596 5.315 5.039 4.750 4.466 4.186 13.255 13.450 13.642 13.821 13.992 14.156 14.309 14.457 14.601 14.740 14.875 15.001 15.128 15.249 15.364 15.475 15.578 15.681 15.778 15.868 15.955 16.034 16.111 16.183 16.248 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 23.382 23.366 23.341 23.306 23.259 23.023 23.138 23.063 22.978 22.884 22.780 22.665 22.543 22.412 22.273 22.124 21.968 21.803 21.627 21.446 21.260 21.064 20.806 20.650 20.429 0.348 0.700 1.051 1.397 1.751 2.103 2.449 2.797 3.142 3.480 3.819 4.159 1.490 4.818 5.141 5.459 5.772 6.080 6.386 6.683 6.969 7.252 7.530 7.800 8.064 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 12.055 11.694 11.339 10.991 10.632 10.280 9.933 9.582 9.237 8.898 8.553 8.209 7.876 7.549 7.215 6.894 6.577 6.254 5.949 5.648 5.359 5.074 4.789 4.502 4.208 13.457 13.616 13.772 13.922 14.076 14.226 14.518 14.661 14.661 14.799 14.937 15.075 15.205 15.331 15.457 15.576 15.689 15.802 15.906 16.003 16.092 16.174 16.251 16.323 16.391

26 27 28 19.396 19.015 18.638 6.883 7.162 7.438 77 78 79 3.894 3.607 3.319

16.310 26 20.205 16.366 27 19.975 16.417 28 19.732

8.324 8.572 8.820 77 78 79 3.926 3.636 3.339 16.452 16.508 16.562

表4-3凸轮的Hc、φc值

Y1

Y2

φc

1.561 3.169 4.778 6.435 8.092 9.798 11.599 13.356 15.256 17.251 19.296 21.484 23.857 26.504 29.460 33.699 26.587 39.238 42.699 44.568 45.900 46.880 47.610 48.158 48.596 48.959 49.288 49.582 49.795 49.795

Hc

φc

54.642 55.205 55.765 56.514 57.326 58.200 59.201 60.202 61.202 62.603 63.203 64.267 65.205 66.205 67.206 68.206 69.271 70.208 71.208 72.209 73.209 74.274 75.211 76.211 77.276 78.213 79.213 80.214 81.151 82.023 Hc

φc

1.561 3.076 4.591 6.154 7.624 9.095 10.615 12.089 13.565 15.090 16.571 18.007 19.492 20.980 22.472 23.966 25.464 26.966 28.425 29.935 31.497 33.016 34.540 36.069 37.557 39.096 40.642 42.100 43.563 45.033 Hc

65.159 φc

63.823 64.134 63.823 64.134 64.888 65.476 65.844 66.141 66.491 66.894 67.229 67.557 68.512 68.953 69.517 70.142 70.703 71.451 72.263 73.200 74.201 75.202 76.202 77.139 78.203 79.204 80.141 81.205 82.206 Hc

148.382 148.368 148.342 148.305 148.256 148.194 148.114 148.021 147.905 147.764 147.598 147.395 147.146 146.829 146.425 145.746 145.199 144.683 143.930 143.502 143.195 142.970 142.805 142.685 142.592 142.517 142.452 142.396 142.356 142.326 141.999 141.988 141.980 141.970 141.961 141.952 141.943 141.933 141.924 141.914 141.905 141.895 141.885 141.876 141.866 141.857 141.847 141.837 141.828 141.818 141.809 141.799 141.789 141.780 141.770 141.760 141.751 141.741 1141.73 141.725 148.382 148.369 148.348 148.316 148.278 148.180 148.119 148.052 147.974 147.891 147.804 147.706 147.602 147.490 147.370 147.243 147.109 146.972 146.824 146.662 146.498 146.326 146.146 145.965 145.772 145.570 145.375 145.173 144.966 148.234 142.299 142.270 142.239 142.205 142.184 142.162 142.138 142.120 142.101 142.081 142.066 142.053 142.038 142.023 142.011 142.000 141.988 141.980 141.971 141.962 141.953 141.943 141.934 141.924 141.916 141.906 141.896 141.888 141.878 141.868

五、总结

汽车发动机制造业目前竞争激烈,建立符合中国国情和工厂实际的零部件加工生产线,制定合适的加工工艺,并选用可靠经济的设备,对降低产品成本,保证产品质量,提高竞争力有很大的现实意义。

凸轮轴作为汽车发动机的关键部件之一,其性能与质量直接影响发动机整机性能。本文针对夏利汽车凸轮轴的加工特点,结合工厂实际,在建立一条集先进性与经济性统一的凸轮轴生产线的过程中,从前期规划开始,对凸轮轴的加工工艺、设备和检测进行了深入研究。在本篇论文里,根据产品要求,制定合理的凸轮轴生产线节拍、平面布置和工艺路线。主要解决了以下问题:

1.根据凸轮轴加工特点,优化选择了加工设备。

2.详细分析了凸轮轴的加工特点和加工难点,优化设计了合理的加工工艺,保证了加工质量。

3.利用包络线理论,对凸轮轮廓的加工原理进行计算及推导,并计算出相应的砂轮中心坐标及设备主轴转速配置,为生产加工,提供控制参数。

4.提出了关于凸轮升程测量的新方法:测量数据定位法及其数据评价。并使之应用于凸轮轴的测量中,保证了产品的质量。

作者在实际生产中结合理论知识总结出本论文,所以,论文中的知识与结论对凸轮轴的实际生产有非常重要的参考价值。

参考文献

[1]杨昂岳.梁术.汽车发动机主要零部件技术水平及发展动向[J];汽车工业研究;1994年06期;46-51.

[2]韦于.凸轮轴实测数据光顺处理[J].广西:微车情报网,1999.

[3]W?H?克劳斯汽车发动机设计[M] 北京:人民交通出版社,1986,123~15.

[4]吉林工业大学内燃机教研室内燃机理论与设计下册[M] 北京.机械工业出版社1980,209~258.

[5]刘永福.凸轮评定公差标准问题探讨[M].北京精密制造与自动化.2002,15~17.

[6]赵新.多参数在线检测设备的温度补偿机理[M].天津.天内科技.2002,21~25.

[7]哈尔滨工业大学机械制造教研室机械制造工艺理论基础[M].北京.机械工业出版社.1993,44~511.

[8]王先逵.机械制造工艺学[M].北京清华大学.1995,5~86.

[9]谢存嬉等.机电一体化生产系统设计[M].北京.机械出版社.1999.

[10]吴天林等.机械加工系统自动化[M].北京兵器工业出版社.1999.

[11]何七荣,潘展,徐琳;凸轮轴型面简易数控磨削技术[J];新技术新工艺;2004年12期;40.

致谢

三年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。三年的求学生涯在师长、亲友的大力支持下,走得辛苦却也收获满囊,在论文即将付梓之际,思绪万千,心情久久不能平静。 伟人、名人为我所崇拜,可是我更急切地要把我的敬意和赞美献给一位平凡的人,我的老师。我不是您最出色的学生,而您却是我最尊敬的老师。您治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。授人以鱼不如授人以渔,置身其间,耳濡目染,潜移默化,使我不仅接受了全新的思想观念,树立了宏伟的学术目标,领会了基本的思考方式,从论文题目的选定到论文写作的指导,经由您悉心的点拨,再经思考后的领悟,常常让我有“山重水复疑无路,柳暗花明又一村”。

感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚谢意!

另外,感谢学校给予我这样一次机会,能够独立地完成一个课题,并在这个过程当中,给予我们各种方便,使我们在即将离校的最后一段时间里,能够更多学习一些实践应用知识,增强了我们实践操作和动手应用能力,提高了独立思考的能力。再一次对我的母校表示感谢。

23

汽车凸轮轴加工工艺分析【实用3篇】

手机扫码分享

Top