数学《二次函数》优秀教案(精选6篇)

时间:2014-05-05 09:38:10
染雾
分享
WORD下载 PDF下载 投诉

数学《二次函数》优秀教案 篇一

二次函数是高中数学中非常重要的一个知识点,其应用范围广泛,对学生的数学能力和思维能力有着重要的促进作用。下面就为大家介绍一份优秀的二次函数教案,希望能够对教师们的教学工作有所帮助。

一、教学目标

1. 掌握二次函数的定义及性质;

2. 能够画出二次函数的图像,并分析其凹凸性、顶点、对称轴等特征;

3. 能够解二次函数的相关问题,包括求解二次函数的零点、最值等;

4. 能够灵活运用二次函数解决实际问题。

二、教学重点

1. 二次函数的定义及性质;

2. 二次函数图像的绘制和分析;

3. 二次函数的零点和最值求解。

三、教学内容

1. 二次函数的定义及性质:介绍二次函数的一般形式和相关定义,引导学生理解二次函数的特点;

2. 二次函数图像的绘制和分析:通过实例演示,让学生学会如何画出二次函数的图像,并分析其特征;

3. 二次函数的零点和最值求解:结合实际问题,引导学生掌握如何通过二次函数解决各类问题。

四、教学方法

1. 教师讲授与学生互动相结合,灵活运用多媒体教学手段,激发学生的学习兴趣;

2. 引导学生通过思维导图、实例分析等方式深入理解二次函数的概念和性质;

3. 鼓励学生积极参与课堂讨论和实践操作,培养其分析问题和解决问题的能力。

五、教学反馈

1. 定期进行小测验,检验学生对二次函数知识的掌握情况;

2. 收集学生的课堂表现和作业情况,及时进行评价和反馈;

3. 鼓励学生提出问题和建议,不断完善教学内容和方法。

通过以上的教学设计,相信能够帮助学生更好地理解和掌握二次函数的相关知识,提高数学学习的效率和质量。

数学《二次函数》优秀教案 篇二

二次函数在高中数学中占据着重要的地位,是学生们学习数学的一个难点和热点。为了更好地帮助学生掌握二次函数的相关知识,下面介绍一份优秀的二次函数教案,希望对广大教师有所启发。

一、教学内容

1. 二次函数的定义及性质:介绍二次函数的一般形式、顶点、凹凸性等基本概念;

2. 二次函数图像的绘制和分析:通过实例演示,让学生学会如何画出二次函数的图像并分析其特征;

3. 二次函数的零点和最值求解:结合实际问题,引导学生掌握如何通过二次函数解决各类问题。

二、教学目标

1. 理解二次函数的定义和性质,掌握二次函数的基本概念;

2. 能够准确画出二次函数的图像,并分析其特征;

3. 能够灵活运用二次函数解决各类实际问题,提高数学建模能力。

三、教学重点

1. 二次函数的定义及性质;

2. 二次函数图像的绘制和分析;

3. 二次函数的零点和最值求解。

四、教学方法

1. 教师讲授与学生互动相结合,灵活运用多媒体教学手段,激发学生的学习兴趣;

2. 引导学生通过思维导图、实例分析等方式深入理解二次函数的概念和性质;

3. 鼓励学生积极参与课堂讨论和实践操作,培养其分析问题和解决问题的能力。

五、教学反馈

1. 定期进行小测验,检验学生对二次函数知识的掌握情况;

2. 收集学生的课堂表现和作业情况,及时进行评价和反馈;

3. 鼓励学生提出问题和建议,不断完善教学内容和方法。

通过以上的教学设计,相信能够帮助学生更好地理解和掌握二次函数的相关知识,提高数学学习的效率和质量。愿所有教师和学生都能在这份优秀的二次函数教案中受益匪浅,取得更好的学习成绩!

数学《二次函数》优秀教案 篇三

  教学目标

  (一)教学知识点

  1、能够利用二次函数的图象求一元二次方程的近似根。

  2、进一步发展估算能力。

  (二)能力训练要求

  1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

  2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

  (三)情感与价值观要求

  通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

  教学重点

  1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

  2、能够利用二次函数的图象求一元二次方程的近似根。

  教学难点

  利用二次函数的图象求一元二次方程的近似根。

  教学方法

  学生合作交流学习法。

  教具准备

  投影片三张

  第一张:(记作§2.8.2A)

  第二张:(记作§2.8.2B)

  第三张:(记作§2.8.2C)

  教学过程

  Ⅰ、创设问题情境,引入新课

  [师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。但是在图象上我们很难准确地求出方程的解,所以要进行估算。本节课我们将学习利用二次函数的图象估计一元二次方程的根。

数学《二次函数》优秀教案 篇四

  一.学习目标

  1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

  2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

  二.知识导学

  (一)情景导学

  1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。

  2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?

  设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .

  3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?

  在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。

  (二)归纳提高。

  上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?

  一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。

  一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?

  (三)典例分析

  例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值.

  (1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2

  (5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c

  例2.当k为何值时,函数 为二次函数?

  例3.写出下列各函数关系,并判断它们是什么类型的函数.

  ⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;

  ⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;

  ⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;

  ⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.

  三.巩固拓展

  1.已知函数 是二次函数,求m的值.

  2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的值.

  3.一个长方形的长是宽的1.6倍,写出这个长方形的面积S与宽x之间函数关系式。

  4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式

  5.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.

  6. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m.

  ⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;

  ⑵求当上部半圆半径为2 m时的截面面积.(π取3.14,结果精确到0.1 m2)

  课堂练习:

  1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。

  (1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .

  2.写出多项式的对角线的条数d与边数n之间的函数关系式。

  3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。

  4.圆柱的高h(cm)是常量,写出圆柱的体积v(cm3)与底面周长C(cm)之间的函数关系式。

  课外作业:

  A级:

  1.下列函数:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,属于二次函数的

  是 (填序号).

  2.函数y=(a-b)x2+ax+b是二次函数的条件为 .

  3.下列函数关系中,满足二次函数关系的是( )

  A.圆的周长与圆的半径之间的关系; B.在弹性限度内,弹簧的长度与所挂物体质量的关系;

  C.圆柱的高一定时,圆柱的体积与底面半径的关系;

  D.距离一定时,汽车行驶的速度与时间之间的关系.

  4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,求第一季度营业额y(万元)与x的函数关系式.

  B级:

  5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为 ,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式.

  6.某地区原有20个养殖场,平均每个养殖场养奶牛20xx头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式。

  C级:

  7.圆的半径为2cm,假设半径增加xcm 时,圆的面积增加到y(cm2).

  (1)写出y与x之间的函数关系式;

  (2)当圆的半径分别增加1cm、 时,圆的面积分别增加多少?

  (3)当圆的面积为5πcm2时,其半径增加了多少?

  8.已知y+2x2=kx(x-3)(k≠2).

  (1)证明y是x的二次函数;

  (2)当k=-2时,写出y与x的函数关系式。

数学《二次函数》优秀教案 篇五

  一、教材分析

  本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

  二、学情分析

  本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

  三、教学目标

  (一)知识与能力目标

  1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

  2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

  (二)过程与方法目标

  通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

  (三)情感态度与价值观目标

  1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

  2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

  四、教学重难点

  1.重点

  通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

  2.难点

  二次函数y=ax2+bx+c(a≠0)的图像的性质。

  五、教学策略与 设计说明

  本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

  六、教学过程

  教学环节(注明每个环节预设的时间)

  (一)提出问题(约1分钟)

  教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

  学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

  目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

  (二)探究新知

  1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

  教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

  学生活动:讨论解决

  目的:激发兴趣

  2.配方求解顶点坐标和对称轴(约5分钟)

  教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

  =0.5(x2-12x+36-36+42)

  =0.5(x-6)2+3

  教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

  学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

  目的:即加深对本课知识的认知有增强了配方法的应用意识。

  3.画出该二次函数图像(约5分钟)

  教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

  学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

  目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

  4.探究y=-2x2-4x+1的函数图像特点(约3分钟)

  教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

  学生活动:学生独立完成。

  目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。

  5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

  教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。

  学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

  目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

  6.简单应用(约11分钟)

  教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

  教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

  学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

  目的:巩固新知

  课堂小结(2分钟)

  1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

  2. 你对本节课有什么感想或疑惑?

  布置作业(1分钟)

  1. 教科书习题22.1第6,7两题;

  2. 《课时练》本节内容。

  板书设计

  提出问题 画函数图像 学生板演练习

  例题配方过程

  到顶点式的配方过程 一般式相关知识点

  教学反思

  在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

  我认为优点主要包括:

  1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

  2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

  3.板书字体端正,格式清晰明了,突出重点、难点。

  4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

  所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

  1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

  2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

  3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

  4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

  重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

数学《二次函数》优秀教案 篇六

  一、教材分析

  1.教材的地位和作用

  (1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。

  (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

  (3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

  2.课标要求:

  ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

  ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

  ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。

  ④会根据二次函数的性质解决简单的实际问题。

  3.学情分析:

  (1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

  (2)学生的分析、理解能力较学习新课时有明显提高。

  (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

  (4)学生能力差异较大,两极分化明显。

  4.教学目标

  ◆认知目标

  (1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

  ◆能力目标

  提高学生对知识的整合能力和分析能力。

  ◆ 情感目标

  制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。

  5.教学重点与难点:

  重点:(1)掌握二次函数y=图像与系数符号之间的关系。

  (2) 各类形式的二次函数解析式的求解方法和思路。

  (3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。

  难点:(1)已知二次函数的解析式说出函数性质

  (2)运用数形结合思想,选用恰当的数学关系式解决几何问题.

  二、教学方法:

  1. 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

  2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

  3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

  三、学法指导:

  1.学法引导

  “授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。

  2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

  4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

  四、教学过程:

  1、教学环节设计:

  根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

  本节课的教学设计环节:

  ◆创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。

  ◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

  ◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

  安排三个层次的练习。

  (一)从定义出发的简单题目。

  (二)典型例题分析,通过反馈使学生掌握重点内容。

  (三)综合应用能力提高。

  既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的`数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

  (四)方法与小结

  由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

  2、作业设计:(见课件)

  3、板书设计:(见课件)

  五、评价分析:

  本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。

数学《二次函数》优秀教案(精选6篇)

手机扫码分享

Top