《用数对确定位置》教学设计 篇一
在教学数学的过程中,有时候学生们会感到困惑,特别是在确定位置这一概念上。为了帮助学生更好地理解和掌握这一知识点,我设计了以下教学方案。
首先,我会通过引导学生观察周围环境中的各种物体,并询问它们的位置关系,让学生意识到位置的概念是如何贯穿于我们日常生活中的。接着,我会引入坐标系的概念,让学生了解如何用数对来确定一个点的位置。通过实际操作,让学生自己绘制坐标系,并在上面标注各种点的位置,加深他们对坐标系的理解。
其次,我会设计一些具体的练习题,让学生运用所学知识解决问题。例如,我会给学生一些地图,要求他们根据给定的坐标点,在地图上标注出相应位置。通过这些练习,学生不仅可以巩固所学知识,还可以提高他们的解决问题的能力。
最后,我会组织一些小组活动,让学生进行合作学习。在小组中,学生可以相互讨论并互相帮助,共同解决问题。通过这种方式,学生可以更好地理解和应用所学知识,同时也培养了他们的团队合作能力。
通过以上教学设计,我相信学生们会更好地掌握用数对确定位置这一知识点,提高他们的数学能力和解决问题的能力,为他们未来的学习打下坚实的基础。
《用数对确定位置》教学设计 篇二
在教学数学的过程中,有时候学生们会感到困惑,特别是在确定位置这一概念上。为了帮助学生更好地理解和掌握这一知识点,我设计了以下教学方案。
首先,我会通过引入一些生动有趣的故事或游戏,引起学生的兴趣。例如,我可以讲述一个迷宫探险的故事,让学生想象自己在迷宫中寻找宝藏的过程,从而引出坐标系和位置的概念。通过这种方式,学生可以更好地理解抽象的概念,提高学习的积极性。
其次,我会设计一些互动性强的教学活动,让学生亲自动手操作,加深对所学知识的理解。例如,我可以准备一些小道具和地图,让学生在地图上标注出给定坐标点的位置。通过这种实践操作,学生可以更直观地感受到数对确定位置的方法。
最后,我会设计一些扩展性强的问题,激发学生的思维。例如,我可以给学生一些图片,要求他们根据图片上的特征,通过数对确定出物体的位置。这样的问题可以让学生运用所学知识解决实际问题,培养他们的逻辑思维和创新能力。
通过以上教学设计,我相信学生们会在轻松愉快的氛围中更好地掌握用数对确定位置这一知识点,提高他们的学习兴趣和解决问题的能力,为他们未来的学习打下坚实的基础。
《用数对确定位置》教学设计 篇三
教学目标:
1、通过练习,使学生进一步提高用数对确定位置的能力。
2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。
教学过程:
一、基础练习
下面是某一地区的平面图。
1、用数对标出环球大厦和购物中心的位置。
2、图中(11,4)表示的位置是()。
3、()和()在同一行上。
4、小明从公园门口出来,到书店该怎样走?
(1)独立完成解答。
(2)集体评讲。
二、提高练习
1、练习三第5题。
(1)理解题意,明白“行”“列”表示的意思。
(2)根据(x,5)这个数对,说说x表示的是列数还是行数?
根据这个数对能确定什么?它表示的可能是哪个班?
(3)在小组中说说第(3)小题。
这里的x,y可能表示哪些数?为什么?
2、完成练习三第6题。
(1)理解题意,明确鲜花和绿色植物都应放在方格线的交点上。
(2)在小组中设计交流。
(3)展示作业,汇报结果。
你能用数对描述一下自己设计的摆放位置吗?
你觉得自己设计的如何?优点是什么?
互相评价:设计是否合理?是否美观?
3、完成练习三第7题。
平移后顶点位置的数对什么变化乐,什么没变?(第一个数变了,第二个数没变)
第一个怎么变化的?
独立在书上方格中完成第(3)小题。
在小组中完成第(4)小题。
说说顺次连接四个点得到了什么图形?
4、完成练习三第8题。
理解题意,简单介绍国际象棋的棋盘。
棋盘上的列车行分别用什么表示?
用g2表示白王,和数对表示的方法相同吗?
完成第(2)小题的填空。
在小组中互相说说黑车从C6~C2,是怎样前进的?
三、阅读“你知道吗”
四、课堂总结
用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识呢?学好这个知识对于大家今后的学习、生活都有重要的作用。
第三单元公倍数和公因数
第一课时:公倍数和最小公倍数
教学内容:教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。
教学目标:
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学准备:
长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。
教学过程:
一、经历操作活动,认识公倍数
1、操作活动。
提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。
学生独立活动后指名在实物展示台上铺一铺。
提问:通过刚才的活动,你们发现了什么?
引导:⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?
⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?
2、想像延伸。
提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。
3、揭示概念。
讲述:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。
说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号表示。
引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?为什么?
二、自主探索,用列举的方法求公倍数和最小公倍数
1、自主探索。
提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?
学生自主活动,在小组里交流。可能的方法有:
①依次分别写出6和9的公倍数,再找一找。
提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?
②先找出6的倍数,再从6的倍数中找出9的倍数。
③先找出9的倍数,再从9的倍数中找出6的倍数。
引导:②和③有什么相同的地方?哪一种方法简捷些?
2、明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最小公倍数。
3、用集合图表示。
指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?
4、完成“练一练”
完成后交流:2和5的公倍数有什么特点?
三、巩固练习,加深对公倍数和最小公倍数的认识
1、练习四第1题。
提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提呢?
2、练习四第2题。
引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?
3、练习四第3题。
集体交流时说说是怎样找的。
四、全课小结
《用数对确定位置》教学设计 篇四
教学目标
1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。
2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程
一、揭示课题,对比引入
谈话:今天这节课,我们学习有关确定位置的知识。(板书课题:用数对确定位置)
出示一排座位图,提问:谁知道小明的位置在哪里?
出示三排座位图,提问:现在小明的位置在哪里?(第1排第3个)
讨论:同样是小明的位置,为什么我们的描述方法却发生了变化呢?
[设计意图:通过引导学生进行对比,让其感受到从一维到二维空间的过渡,拓展学生的空间观念。]
二、设置冲突,引发需要
1.激活经验。
谈话:我们每个人在教室里都有自己的位置,班长坐在哪里?同学们不用手指,能告诉听课的老师吗?
学生可能回答:第×排第×个,第×组第×个,第×行左边×个,第×列第×个……(教师相应板书)
2.认识列。
提问:看黑板上这么多种说法,你有什么感觉?(太乱了,不统一)为了便于交流,需要把表述方法统一一下。我们把竖着排的叫做列。(板书:列)
屏幕出示坐次图,从左往右依次是第一列、第二列……(课件依次标出座位图上的列数)
提问:屏幕上的座位哪里是第一列?列数应该从哪边往哪边数?(从左往右数)列从左往右数,是从谁的角度看的呢?
要求:谁能上来指一指我们教室中的第一列。(学生上台指)先想一想自己的位置在第几列,老师叫到第几列,请相应同学起立。
3.认识行。
谈话:竖排叫做列,横排叫做──行。(板书:行)确定第几行一般是从前往后数的。(板书:从前往后数)
提问:这幅图上第1行在哪里?第3行呢?这里一共有几行?(课件依次在座位图上的行数)
[设计意图:自由表示班长的位置,让学生感受标准不一所带来的麻烦,引出统一标准的必要性,从而明确列与行的表述方法。通过有意识的引导,消除可能由于观察角度而引发的对列的错误理解。]
4.引发需要,探寻方法。
提问:现在能用列和行说说班长的位置吗?(学生可能说:第几列第几行,第几行第几列,教师相应板书)
课件将座位图改为圆圈图,谈话:我们用圆圈表示每一个同学,请大家用笔记录红色圆圈表示的位置。(快速出示几个表示学生位置的红点,学生来不及记录)
设问:是老师的速度太快了,还是你们的记录方法不够简捷呢?怎样才能又快又准地记下每个同学的位置呢?同学们要不要再试一次?
反馈:小军的位置你是怎么记的?(学生的记法可能是:4列3行;3行4列;4,3;3,4;3—4;4—3;……)
提问:你喜欢哪一种方法,为什么?
讲解:其实,数学上专门有一种用来确定位置的简捷方法,请将书翻到第15页,看看课本上是怎么表示的?板书:(4,3)。
提问:书上也是用两个数表示位置,跟我们的写法有什么不同?这样写有一个名称叫数对。(板书:数对)
提问:数对中的两个数各表示什么呢?你觉得这样规定有什么好处?用数对表示位置要注意什么?
谈话:这个数对就表示小军的位置,读作“数对四三”。其他几个同学的位置,你会用数对表示吗?
学生用数对表示小红、小芳、小华的位置。[设计意图:引入数对直接告诉学生也未尝不可,但数对产生的背景及必要性却不能为学生所感受。这里,让学生经历快速记录和优化的过程,从而逼近数对简约、凝练的特质,催生出数对的雏形。这一过程是逐步“数学化”的过程。]
5.体验唯一 ,加深理解。
谈话:想一想,你在教室里的位置用数对怎么表示?写在纸上,和你的同桌比较一下,再和你前后的同学比较一下,你有什么发现?
(1)起立练习。
依次出示(1,5)(4,2)(6,5)(2,2)(8,3),请这些位置上的同学站起来大声说出自己的位置。
(2)出示(3,5)、(5,3),学生起立。
提问:这两个数对有什么相同点?(都由数字3、5组成)有什么不同点?(两个数字3、5组成顺序不一样,表示的位置也不一样)
(3)依次出示(4,x)、(y,5)、(x,y),学生起立。
指起立的学生,提问:你为什么起立?是怎么想的?
[设计意图:当学生初步认识数对后,通过找同一列、同一行学生的`位置,让学生初步感悟用数对确定位置的规律。接着安排了写数对、找数对等分层变式练习:任意数对、两个数字相同的数对、颠倒数字位置的两个数对,含有字母的数对,帮助学生进一步理解数对中各个数的意义。此环节层层递进,逐步渗透,以螺旋上升的方式解决了这节课的教学重点。]
三、理解应用,发展思维
1.抽象坐标。
谈话:如果我们用线把这些圆点连起来,再把列和行的起点定为“0”,就可以变成一个方格图(课件动态呈现),它和刚才的圆点图相比更加简单清楚,这样的方格图也叫坐标系,我们到中学会慢慢研究它。在这个方格图上,小强的位置怎么表示?小丽和小刚的位置呢?(学生口答)
[设计意图:张景中院士曾经说过:“小学生学的是很初等的数学,但是编教材和教学研究要有高观点。”本节课的内容不仅仅是简单地用数对表示位置,更应该建立和初中数学的联系。利用课件演示“实物图——点阵图——方格图—坐标系”的逐渐抽象过程,引导学生初步感悟平面直角坐标系,培养学生的空间观念。]
2.渗透思想。
出示:(1,5)、(3,3)、(4,2)。
谈话:请同学们在方格图中描出下面的点,把这三个点用线连起来,你发现了什么?(形成一条直线)
启发:不看图形,就看这些数对,你发现它们有什么特征?(行数与列数相加等于6)
出示:(2,4)、(2,3)。
提问:下面的两个数对,哪个会在这条直线上?
谈话:再把这条直线向上平移两格,4个点的位置现在用什么数对表示?你发现了什么?(行数减少了2,列数不变)想一想,如果把这条直线再向右平移两格,各个数对会发生什么变化?(列数增加2,行数不变)
指出:图形的特征会反映在数对上,数对的特征也会表现在图形中。
[设计意图:这个环节渗透了数形结合的思想。用代数的方法研究图形,是笛卡尔解析几何思想的精髓。]
3.理解应用。
谈话:去年在上海我国承办了第41届世博会。下面我们来看看世博园的园区图(不提供数对),你能用数对表示这4个馆的位置吗?如果给你提供一个数对(标出希腊馆的数对),你能根据希腊馆的位置,写出另外3个馆的位置吗?
小结:要想确定一个位置,首先要确定列数和行数。
[设计意图:这一题的设计意在使学生体会到:确定位置必须在二维的平面上给定两个明确的参数,使学生感受平面直角坐标系的本质思想。]
四、拓展知识,体会价值
谈话:用数对确定位置不仅在日常生活中有着广泛的应用,在军事、地理等很多领域也会用到,为了描述地球上各点的位置,地理学家建立了经纬线的概念。(课件展示动画介绍经纬线)现在我们就从卫星上找找上海世博园中中国馆的准确位置。
提问:通过今天的学习,你知道了什么知识?
谈话:数对给我们的生活带来了方便,但数对的出现却是一件非常偶然的事情。(课件介绍笛卡尔由蜘蛛织网而创造出数对的过程)希望同学们能够向数学家们学习,善于观察,勤于思考,从生活中发现更多的数学问题。
[设计意图:结合数对介绍经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。数对创造过程的介绍,对学生进行情感态度的教育,并将他们的数学思考引向深入。]
《用数对确定位置》教学设计 篇五
教学内容
苏教版课程标准·数学五年级下册第15页。
教学目标
1、使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。
2、使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。
3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程
一、设境置疑,产生需要
1、(课件出示学生座位图)仔细观察这幅座位图,你知道小军坐在哪里吗?(板书:第4组第3个;第3排第4个)
2、设疑:小军的位置没有变,为什么同学们的说法都不一样呢?
3、你能具体说一说第4组第3个是怎么看的吗?第3排第4个你们又是怎么看的呢?
4、揭题:由于同学们看的方法和角度不同,所以在描述小军位置时,产生了不同的说法。那么,怎样才能正确、简明地描述小军的位置呢?今天这节课我们就一起来进一步学习确定位置。(板书:确定位置)
[设计意图:通过呈现学生比较熟悉的教室里有序排列的座位的场景,激活学生头脑中已有的描述物体位置的经验;然后通过交流,引发学生产生用一致的方式表示位置的需要。]
二、逐步抽象,掌握方法
1、列、行的含义和确定第几列、第几行的规则
(1)认识场景图中的竖排和横排
①继续观察上幅座位图,在教室里,竖里面有几排?如果从左往右数的话,这是第1竖排,这是第2竖排……这是第6竖排。
②在教室里,横里面又有几排呢?如果我们从前往后数的话,这是第1横排,这是第2横排……这是第5横排。
(2)认识圆圈图
①为了清楚地表示每个同学坐的位置,现在我们把他们坐的位置都用圆圈表示出来。(课件出示)
②为了突出小军坐的位置,我们把小军坐的位置用红色圆圈来表示。(课件出示)
(3)认识列
①从这幅圆圈图上,如果从左往右数,现在你还能指一指第1竖排在哪里吗?第5竖排在哪里?第6竖排呢?
②揭示:其实每一竖排在数学上我们都把它叫做列。(板书:竖排 列)确定第几列我们一般都是从左往右数的。(板书:从左往右数)
③想一想这一列应是第几列?这一列又是第几列?这幅图上一共有几列?(课件依次出示第1列到第6列)
(4)认识行
①刚才我们已经知道每一竖排都叫做列,而每一个横排在数学上我们把它叫做行。(板书:横排 行)确定第几行一般是从前往后数的。(板书:从前往后数)
②想一想第1行在哪里?第3行呢?在这幅图上一共有几行呢?(课件依次出示第1行到第5行)
(5)巩固列和行的认识
刚才我们已经知道了列和行,请同学们闭上眼睛想一想,我们是怎样规定列和行的?(随学生回答,课件闪动演示)
[设计意图:先认识场景图中的竖排和横排,然后把具体的场景图逐步抽象成圆圈图,为后面教学作了孕伏和铺垫。在此基础上,教学列、行的合义和确定第几列、第几行的规则,一切显得水到渠成。同时,借助于多媒体课件,形象直观地帮助学生理解规则。]
2、数对的含义和数对表示位置的方法
(1)学习用第几列第几行表示位置
①从圆圈图上,你能找到第1列第1行的位置在哪里吗?
②你现在还能用第几列第几行来描述小军的位置吗?
③现在同学们都用第4列第3行来表示小军的位置,看来用第几列第几行的方法来描述小军的位置真好,让我们有了一个统一的说法。
(2)学习用数对表示位置
①揭示:小军的位置是第4列第3行,我们也可以用数对表示。(板书:数对)
②猜一猜:既然是数对,你能不能猜一猜有几个数呀?
③介绍数对表示位置。
数对有两个数,我们在表述的时候,应该先表示列数,再表示行数,前后的顺序是不能颠倒的。因为小军的位置是在第4列第3行,所以在这里我们应先写列数4,再写行数3。数对还有它特定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间写上一个逗号,把两个数隔开。完成板书:(4,3),这个数对就表示小军的位置,我们把这个数对读作“四三”。
④想一想:数对(4,3)表示什么意思?
[设计意图:通过让学生找“第1列第1行”的位置这一活动,然后根据圆圈图中小军的位置,有意识地让学生说说小军坐在“第几列第几行”,统一认识。在此基础上,给出用数对表示的方法,结合板书使学生理解数对中的每一个数各表示什么,从而初步理解数对的含义。]
(3)尝试用数对确定位置
①在这幅圆圈图中,你还能找到第2列第4行的位置吗?这一位置用数对该如何表示?这里的2和4又分别表示什么意思呢?
②在练习纸上的圆圈图中,任意找一个位置,说一说你找的位置是第几列第几行,用数对怎样表示。
③交流:你找的位置是第几列第几行,用数对如何表示?
④如果有一个同学坐的位置是用数对(6,5)表示的,你能在圆圈图上很快地圈出他的位置吗?你是怎样想的?
⑤在练习纸上写一个数对,让你的同桌在圆圈图上找出相应的位置,并互相说一说这个位置是第几列第几行。
[设计意图:联系例题中的圆圈图,通过指定用第几列第几行表示的位置,让学生完整地写出表示这一位置的数对;以及根据数对去找某一位置这两个活动,帮助学生加深对数对含义的理解,初步学会用数对表示座位所在的位置。]
三、联系实际,加深理解
1、用数对表示教室里的位置
(1)谈话:刚才我们用数对很快确定了圆圈图上的位置,那么在教室里,同学们的位置是在第几列第几行,用数对怎样表示呢?
(2)明确教室里的列和行。
①如果站在老师的角度来观察同学们的位置,想一想第1列应该在哪里?第5列在哪里?第8列呢?
②列我们已经清楚了,那第1行在哪里呢?第4行呢?
③请第1列第1行的同学站起来。
(3)用数对确定位置。
①观察一下数学课代表的位置,看看是在第几列第几行,用数对怎样表示?
②你的位置在第几列第几行,怎样用数对表示呢?先自己想一想再告诉你的同桌。
③猜同学:在我们教室里有个同学的位置用数对表示是(3,4),猜一猜他是谁呀?
④猜好朋友:现在你不用告诉大家你的好朋友是谁,你用数对把你好朋友的位置表示出来,让大家猜猜他是谁。
[设计意图:因为圆圈图中的位置和实际教室里的位置稍有不同,所以教师加强了指导作用。然后,通过用数对描述数学课代表位置、自己位置的活动,以及根据数对猜同学、猜好朋友的活动,让学生结合教室中的位置,进一步巩固对列、行和数对的含义的认识。]
2、用数对表示装饰瓷砖的位置
(1)谈话:在生活中的很多现象都用到了数对的知识。(出示练习三第2题瓷砖图)这是小明家厨房的一面墙上贴着的瓷砖,你能用数对表示这四块花色瓷砖的位置吗?
(2)仔细观察这四块花色瓷砖的位置和表示的数对,你发现什么规律了吗?
3、国际象棋记录棋子位置的方法
(1)谈话:数对不仅在生活中有着广泛的应用,在竞技体育中也经常用到数对的知识。(课件出示国际象棋比赛的画面)
(2)介绍国际象棋(课件依次出示)。
①国际象棋的棋盘。
②国际象棋表示棋盘方格所在列数和行数的方法。
国际象棋棋盘上通常用小写字母a~h分别表示棋盘方格所在的列数,用数字1~8分别表示棋盘方格所在的行数。
③国际象棋的棋子。
(3)交流理解国际象棋记录棋子位置的方法。
①(出示练习三第8题图)现在棋盘上白王所处的位置用国际象棋专用的方法记为g2,你知道它是用什么方法记录白王的位置吗?这个g2表示什么意思呢?
②棋盘上的黑王、黑车、白兵各在什么位置?先说一说,再记录下来。
③如果黑马的位置用d5表示,你知道它在哪里吗?如果白马的位置用f7表示,你又知道它在哪里吗?
4、用数对表示礼堂中的座位
(1)(课件出示练习三第5题图)找一找在这张位置图上一年级一班的位置在哪里?六年级五班的位置在哪里?
(2)如果有一个班级所处的位置用数对表示是(□,3),你能确定是哪个班级吗?可能是哪些班级呢?为什么?
(3)如果老师告诉你,这个班级的位置用数对表示是(2,3),现在你知道是哪个班级了吗?
[设计意图:练习的形式活泼有趣,富有开放性和人文性,既拓宽了学生的知识面,又能让学生体会数对对确定位置的方法的应用价值。在活跃课堂气氛的同时。更有效地巩固了用数对确定位置这一新知识。]
四、拓宽视野,全课总结
1、介绍
(1)用经线和纬线确定地球上任意一点位置的方法。
(2)部分城市的地理位置,如:北京在北纬39°57′,东经116°28′;无锡在北纬31°35′,东经120°39′。
(3)经度和纬度在航海、航天、气象、军事等方面的运用。(课件出示相关图片)
2、全课总结
(1)讲述:用经度和纬度确定位置和我们用数对确定位置的道理是一样的。
(2)课外作业:数对的知识在生活中的运用很广泛,有兴趣的同学课后可以通过上网、看书等方式搜集这方面的资料。
[设计意图:结合数对介绍地球仪上的经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。布置的作业由课内向课外拓展,可以使学生将书本知识与生活实际进行链接,感受数学与生活的密切联系,将数学思考引向深处。]
《用数对确定位置》教学设计 篇六
教学目标:
1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。
2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学重点:
会正确用数对表示具体的位置。
教学难点:
培养学生的空间观念。
教学准备:
每位学生准备红、绿两支水彩笔;练习纸一张。多媒体课件。
教学过程:
一、情境引入,激发需要
提问:能说出我们班中队长坐在哪里吗?
出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)
质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)
提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)
提问:你认为哪一种方法更好些?(学生中可能会出现两种不同的意见,注意引导学生体会:如果有一个约定,大家都按照这样的规则去做,就不会表达不清了)
揭示课题:怎样规定横排和竖排呢?这节课我们就来学习一种既准确又简洁的确定位置的方法。板书:确定位置
二、认识列、行和数对
1、认识列、行的含义
师:你的座位在整个会场中还可以用第几列第几行来表示
板书列行
师:在你的理解中,什么叫“列”?什么叫“行”?请你比划一下。
板书:竖排为列横排为行
电脑显示座位中的列、行
2、统一定位
(1)请3位学生上台凭票指出自己找到的位置。并简述是怎样找到的?
师:个别同学有异议吗?
情况一:都能正确找到位置。
师:他们在找座位时有哪些相同的方法步骤?
(发现他们在数列与行的时候,都很有序。先找列,再找行;确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。)
情况二:两人找到了同一个座位。
在矛盾中引出:由于同学们看的方法和角度不同,所以在找位置时,产生了不同的说法,看来得统一定位。确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。请刚才有争议的同学重新找到自己的座位。
(2)教师指座位,学生口答。
第1列第1行、第5列第7行
第11列第7行、第2列第10行
3、用数对表示位置
(1)提炼数对
师:在教室后面坐着几位老师,请你用既准确、又简洁的方法,把老师的位置记录下来。
反馈:把学生的记录方法一一呈现在黑板上,作为进行比较的素材
可能出现:a全部用文字b第2列第3行c(2,3)
52(5,2)
47(4,7)
师:这几种的记录方法,有什么相同的地方?(相同点,都是用两个数分别表示列和行。)
师:这几种方法,你喜欢哪一种?为什么?
师:大家的方法已经很接近和数学家的方法。数学上用两个数分别表示列和行,中间用逗号隔开,再用小括号把两个数括起来,就叫做数对。
(2)读法和意义
读一读数对(2,3)
数对(2,3)表示什么?这两个数(2,3)分别表示什么?
(3)完整书写课题
师:用有顺序的两个数表示平面中的位置,就是今天我们的学习内容。(板书完整课题:用数对确定位置)
(4)数对的作用
师:认识了数对,充分让我们体验到数学表达的简约之美。请用数对说说你现在的位置?同桌交流。小结:根据两个数组成的数对,能很快确定教室里每个人的位置。
三、用数对表示平面图上点的位置。
1、动物园示意图
(1)质疑,引入列行标准
师:这是动物园的示意图,动物园内的大象馆、猴山、海洋馆等不规则地分布着,说说动物园大门的位置?(列行不明,难以描述)
可用一定大小的方格来统一距离,那些分散的场馆就好似方格中的点了。
(2)观察起点的位置
方格中的0表示什么?(既是列的开始,也是行的开始;同时也指示了列从左往右,行从上往下。)
(3)大门的位置用数对(3,0)表示。
(4)数对表示大象馆和海洋馆的位置。
表示第几列,第几行?你是怎样看的?
(5)学生独立完成
a、熊猫馆的位置在第()列第()行,用数对表示为(3,5)。
b、海洋馆的位置在第()列第()行,用数对表示为(5,3)。c、在图上标出下列场馆的位置。
飞禽馆(0,1)大象馆(0,4)猴山(3,3)
(6)观察,讨论,深化数对的意义。同时向学生渗透坐标思想。
选择其中的两个位置进行比较,你发现什么?
发现一:数对(3,5)和(5,3),同样的两个数写的位置不同,实际的位置不同,因此在写数对时要按照规定先列再行。
发现二:猴山和海洋馆都在同一行上,因此第2个数都相同。
师:这一行上还有许多点,它们都可表示(几,3)列数不确定而行数确定,你能用一个数对来概括这一行上的所有点的位置吗?
发现三:熊猫馆(3,5)和猴山(3,3),数对中的第一个数相同,它们都在同一列上。用(3,y)可以表示这列上所有点的位置。
四、应用数对,创作图形。培养观察比较,空间想象能力。
1.根据顶点的数对,在方格中画出三角形。
(1)想一想
观察顶点的数对a(1,1)b(3,1)c(1,3),想象这是个什么图形?
(2)画一画
根据顶点的数对,在方格中画出这个三角形。
(3)移一移
画出这个三角形向上平移5个单位后的图形。说一说又是什么三角形?
2.根据顶点的数对,在方格中定点连线,找规律(1)根据数对在图上描出各点,标上字母,并顺次连接a、b、c、d。
a(1,9)b(2,8)c(3,7)d(4,6)
(2)比较这些数对,你有什么发现?
列变化,行也随之变化;但列与行的和是不变的。当列和行的和是10时,连接各点是一条线段。如果把这条线段的两端延长,想一想,还有哪些点也一定在这条斜线上?
五、总结、延伸。
1、师:今天这节课学了什么?你对数对都了解了哪些?
2、在直线上确定一个点,只要一个数据;
在平面上确定一个点,需要两个数据,就是今天我们学的数对;
在三维空间里确定一个点,也需要数据,需要几个数据?