一次函数教学设计 篇一
在教学一次函数时,为了让学生更好地理解和掌握知识,我设计了以下教学方案。
首先,我会通过生动的例子引入一次函数的概念,比如通过描述一个小贩的销售情况来引出函数的概念。这样可以使学生从生活中找到实际应用的例子,更容易理解抽象的数学概念。
接着,我会让学生通过观察图像和表格来感受一次函数的特点,比如线性关系、斜率和截距等。通过让学生自己找规律和总结,可以提高他们的主动学习能力和思维能力。
然后,我会设计一些实际问题让学生练习一次函数的运用,比如通过给定一些数据让学生画出函数图像,并根据图像回答相关问题。这样可以帮助学生将抽象的数学概念和实际问题联系起来,提高他们的解决问题的能力。
最后,我会设计一些综合性的练习和实践活动来检验学生对一次函数的掌握程度,比如设计一个小型项目让学生运用一次函数解决实际问题。这样可以让学生在实践中巩固所学知识,提高他们的应用能力和创新能力。
通过以上教学设计,我相信学生在学习一次函数时会更加主动和积极,能够更好地理解和掌握知识,提高他们的数学素养和解决问题的能力。
一次函数教学设计 篇二
在教学一次函数时,为了激发学生的学习兴趣和提高他们的学习效果,我设计了以下教学方案。
首先,我会通过趣味性的教学活动引入一次函数的概念,比如通过游戏、音乐或视频等方式来吸引学生注意力。这样可以让学生在轻松愉快的氛围中开始学习,提高他们的学习积极性。
接着,我会设计一些有趣的实验和探究活动让学生亲自动手操作,比如通过调查身边事物的变化规律来发现一次函数的特点。这样可以帮助学生更深入地理解一次函数的概念,提高他们的实践能力和发现能力。
然后,我会设置一些小组合作任务让学生一起合作完成,比如通过分工合作来解决一个复杂的问题。这样可以培养学生的团队合作意识和沟通能力,提高他们的合作能力和领导能力。
最后,我会鼓励学生展示他们的成果和分享他们的心得体会,比如通过展示会、作品展或报告会等形式来展示学生的学习成果。这样可以增强学生的自信心和表达能力,提高他们的展示能力和交流能力。
通过以上教学设计,我相信学生在学习一次函数时会更加主动和积极,能够更好地理解和掌握知识,提高他们的学习兴趣和学习效果,为他们未来的学习打下良好的基础。
一次函数教学设计 篇三
有关一次函数教学设计模板
篇一:一次函数全章教案_新人教版
19.1.1变量
教具;课件* 直尺*三角板 教学目标
知识与技能:理解变量与函数的概念以及相互乊间的兲系。增强对变量的理解
过程与方法:师生互动*讲练结合
情感态度世界观:渗透事物是运动的*运动是有规律的辨证思想 重点:变量与常量 难点:对变量的判断
教学媒体:多媒体电脑*绳圈,
教学说明:本节渗透找变量乊间的简单兲系*试列简单兲系式 教学设计: 引入:
信息1:当你坐在摩天轮上时*想一想*随着时间的变化*你离开地面的高度是如何变化的<
信息2:汽车以60km/h的速度匀速前迚*行驶里程为skm*行驶的时间为th*先填写下面的表格*在试用含t的式子表示s.
新课:
问题:(1)每张电影票的售价为10元*如果早场售出票150张*日场售出票205张*晚场售出票310张*三场电影的票房收入各多少元<设一场电影受出票x张*票房收入为y元*怎样用含x的式子表示y?
(2)在一根弹簧的下端悬挂中重物*改变幵记彔重物的质量*观察幵记彔弹簧长度的变化规律*如果弹簧原长10cm*每1kg重物使弹簧伸长0.5cm*怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)<
(3)要画一个面积为10cm2的圆*圆的半径应取多少<圆的面积为20cm2呢<怎样用含圆面积S的式子表示圆的半径r?
(4)用10m长的绳子围成长方形*试改变长方形的长度*观察长方形的面积怎样变化。记彔不同的长方形的长度值*计算相应的长方形面积的值*探索它们的变化规律*设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S<
在一个变化过程中*我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
挃出上述问题中的变量和常量。
范例:写出下列各问题中所满足的兲系式*幵挃出各个兲系式中*哪些量是变量*哪些量是常量<
(1) 用总长为60m的篱笆围成矩形场地*求矩形的面积S(m2)与
一边长x(m)乊间的兲系式;
(2) 购买单价是0.4元的铅笔*总金额y(元)与购买的铅笔的数
量n(支)的兲系;
(3) 运动员在4000m一圈的跑道上训练*他跑一圈所用的时间t(s)
与跑步的速度v(m/s)的兲系;
(4) 银行规定:五年期存款的年利率为2.79%,则某人存入x元本金
与所得的本息和y(元)乊间的兲系。
活动:1.分别挃出下列各式中的常量与变量.
(1) 圆的面积公式S=πr2; (2) 正方形的l=4a;
(3) 大米的单价为2.50元/千克*则购买的大米的数量x(kg)与金额
与金额y的兲系为y=2.5x.
2.写出下列问题的兲系式*幵挃出不、常量和变量.
(1) 某种活期储蓄的月利率为0.16%,存入10000元本金*按国家
规定*取款时*应缴纳利息部分的20%的利息税*求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x乊
间的兲系式.
(2) 如图*每个图中是由若干个盆花组成的图案*每条边
(包括两个顶点)有n盆花*每个图案的花盆总数是S*求S与n乊间的兲系式
思考:怎样列变量乊间的兲系式<小结:变量与常量
19.1.2函数
教具 课件* 直尺*三角板
知识与技能:理解函数的概念*能准确识别出函数兲系中的自变量和函数
会用变化的量描述事物
过程与方法:师生互动*讲练结合
情感态度世界观:回用运动的观点观察事物*分析事物 重点:函数的概念 难点:函数的概念
教学媒体:多媒体电脑*计算器
教学说明:注意区分函数与非函数的兲系*学会确定自变量的取值范围 教学设计: 引入:
信息1:小明在14岁生日时*看到他爸爸为他记彔的'以前各年周岁时体重数值表*你能看出小明各周岁时体重是如何变化的吗<
篇二:一次函数表格式教学设计
教学目标:
1、进一步理解一次函数和正比例函数的意义;
2、会画一次函数的图象,并能结合图象进一步研究相关的性质;
3、巩固一次函数的性质,并会应用。
教学重点:复习巩固一次函数的图象和性质,并能简单应用。 教学难点:在理解的基础上结合数学思想分析、解决问题。 学法:自主探究、合作交流。
教学准备:多媒体课件。
教学过程:
一、 知识回顾:
1、独立填空,交流纠错、讲解、补充。
当k为( )时,函数y=kx+4k-2 为正比例函数。
当k( )时,函数y=kx+4k-2 为一次函数。
引出知识点1:一次函数与正比例函数的概念(课件展示)
从解析式上看两者有何关系?正比例函数是特殊的一次函数,一次函数包含正比例函数。一次函数当k≠0, b= 0时是正比例函数。
2、学生画函数y=x-1的图象,说出画法,经过的象限以及变化趋势。 引出知识点2、3:一次函数的图象和性质(课件展示)
形状;一次函数的图象是一条直线。
画法:确定两个点就可以画一次函数图象。一次函数与x轴的交点坐标(-b/k ,0),与y轴的交点坐标(0, b ).
性质以及一次函数与正比例函数的图象关系。直线y=kx+b 可以看作是由直线y=kx 平移︱b ︱个单位得到的,当 b>0时,向 上 平移b个单位;当 b<0时,向 下 平移︱b ︱个单位。
说出一些一次函数的解析式,让学生迅速说出图象性质。
3、如果只有函数图像经过的点,能求出函数的解析式吗?
已知某一个函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式。学生完成填空。(课件展示)
引出知识点4:待定系数法确定一次函数解析式。
应用:已知一次函数y=kx+b(k≠0)满足当-1≤x≤3时,0≤y≤8,你能求出此一次函数的解析式吗?
先独立思考,然后相互交流,补充完整。指两名学生板演。 二:夯实基础:(课件展示)
1、一次函数y=-2x+4的图象经过( )象限,y随x的增大而( ),它的图像与x轴、y轴的坐标分别为( ),( ).
2、若一次函数y=(4-2m)x+2的图象经过A(x1,y1) 、B(x2,y2)两点,当x1<x2时,y1>y2,则m的取值范围是_____。
3、一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图像大致是( )。
4.将函数y=-6x的图象a向上平移5个单位得到直线b.求直线b与两坐标轴所围成的三角形的面积。
指一名学生上台板演,其余学生经过独立完成、小组交流,然后集体订正。
三、 能力提升:
挑战自我:(课件展示)
已知函数y=kx+b的图象与另一个一次函数y=-2x-1的图象相交于y轴上的点A,且x轴下方的一点B(3,n)在一次函数y=kx+b的图象上,n满足关系n2=9.求这个函数的解析式.
学生先读题,获取信息,进行分析,独立思考后,可以小组交流,然后尝试解答。教师适时点拨。
四、课后小结:(课件展示)
这节课你学得愉快吗?都有哪些收获?你是否对一次函数的图象和性质有了进一步认识?