按比分配教学设计 篇一
在教学中,按比分配教学设计是一种常见的教学方法。通过合理地分配比分,可以有效地引导学生学习,激发学生的学习兴趣,提高学生的学习效果。本文将探讨按比分配教学设计的原则和方法,以及如何在实际教学中应用这一方法。
首先,按比分配教学设计的原则是要根据学生的学习能力和兴趣来确定比分。不同的学生有着不同的学习特点,有些学生可能对某些知识点特别感兴趣,而对其他知识点则缺乏兴趣。因此,在设计教学计划时,应该根据学生的实际情况来确定比分,使每个学生都能够在学习中找到自己的兴趣点,从而提高学习的积极性。
其次,按比分配教学设计的方法是要在教学过程中灵活运用。在实际教学中,老师可以通过设置不同的比分来引导学生学习。比如,可以通过给予不同难度的作业或考试来确定不同的比分,让学生在学习中不断挑战自己,提高学习的积极性和动力。同时,老师还可以通过设置不同的分组来让学生之间相互学习,促进学生之间的合作和交流,提高学习效果。
最后,按比分配教学设计的应用是要结合具体的教学内容和教学目标来确定比分。在设计教学计划时,老师应该根据教学内容的难易程度和学生的学习目标来确定比分,使教学设计更加符合实际需求。同时,在实际教学过程中,老师还应该根据学生的学习情况来及时调整比分,使每个学生都能够在学习中取得进步。
综上所述,按比分配教学设计是一种有效的教学方法,可以帮助学生提高学习效果,激发学生的学习兴趣。在实际教学中,老师应该根据学生的实际情况和教学目标来确定比分,并灵活运用这一方法,使教学设计更加符合学生的需求,提高教学效果。
按比分配教学设计 篇二
按比分配教学设计是一种灵活多样的教学方法,可以根据学生的实际情况和教学目标来确定比分,帮助学生提高学习效果。在实际教学中,老师可以通过灵活运用不同的比分来引导学生学习,激发学生的学习兴趣,提高学生的学习积极性和动力。本文将探讨按比分配教学设计的优势和应用,并结合实际案例来说明这一方法的有效性。
首先,按比分配教学设计的优势在于可以根据学生的实际情况和学习需求来确定比分。在实际教学中,老师可以根据学生的学习能力和兴趣来设置不同的比分,让每个学生都能够在学习中找到自己的学习动力,提高学习效果。同时,按比分配教学设计还可以帮助老师更好地了解学生的学习情况,及时调整教学策略,提高教学效果。
其次,按比分配教学设计的应用在于可以通过设置不同的比分来引导学生学习。在实际教学中,老师可以通过给予不同难度的作业或考试来确定不同的比分,让学生在学习中不断挑战自己,提高学习的积极性和动力。同时,老师还可以通过设置不同的分组来促进学生之间的合作和交流,提高学生的学习效果。
最后,按比分配教学设计的有效性在于可以根据具体的教学内容和教学目标来确定比分。在设计教学计划时,老师应该结合教学内容的难易程度和学生的学习目标来确定比分,使教学设计更加符合实际需求。同时,在实际教学过程中,老师还应该根据学生的学习情况和反馈来及时调整比分,使每个学生都能够在学习中取得进步。
综上所述,按比分配教学设计是一种有效的教学方法,可以帮助学生提高学习效果,激发学生的学习兴趣。在实际教学中,老师应该根据学生的实际情况和教学目标来确定比分,并灵活运用这一方法,使教学设计更加符合学生的需求,提高教学效果。
按比分配教学设计 篇三
教学目标:
1、知识目标:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。
2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。
3、情感目标: 让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣, 渗透转化的数学思想。
教学重点和教学难点:
理解按比分的意义,学会运用不同的方法解决按比分配的问题。
教学过程:
一、复习引入
(一)抢答:
1. 将10克糖放入90克水中,糖和水的比是多少?糖占水的几分之几?水是糖的几倍?糖是糖水的几分之几?水是糖水的几分之几?
2. 小刚家养的鸡、鸭、鹅的只数比是7∶2∶1,那么鸡的只数占三种家禽总数的()(),鸭的只数占三种家禽总数的()(),鹅的只数占三种家禽总数的()()。
3. 根据“四二班男生人数和女生人数的比是1∶2”这个信息,你能想到什么?
(二)口头列式计算:
1. 果园有100棵苹果树,梨树的棵数是苹果树的53,梨树有多少棵?
2. 学校操场共有400平方米,由一年级和六年级的同学打扫,平均每个年级打扫多少平方米?
导入:这是一道什么应用题?(平均分)你认为这样分配任务合适吗,为什么?你认为应该怎样分配任务?
二、新课教学
(一)改编复习题,分析题意。
根据学生的回答,给上题补充一个条件,改编成一道按比分的应用题:学校操场共有400平方米,按1∶4的比分配给一年级和六年级的同学打扫,两个年级各打扫多少平方米?
“按1∶4的比分配给一年级和六年级的同学打扫”这句话是什么意思?根据这句话我们可以想到什么?
多请几个学生说一说。
(二)学生试做。
再请学生自己试着做一做。鼓励学生用不同的方法,如果觉得有困难,可以自己看一看书上49页的例2。
(三)集体订正评讲。
教师根据学生的回答画示意图,板书算式,并让学生说一说每一步算的是什么。
(四)再次改编复习题。
学校操场共有400m2,按1∶3∶4的比分配给一年级、二年级和六年级的同学打扫,这三个年级各打扫多少m2?
教师引导,师生一起完成。
(五)比较两道例题,小结。
这两题有什么共同的地方?(第1题中400 m2是一年级和六年级的同学要打扫的面积总和,是按1∶4这个比来分的。要求一年级打扫多少和六年级打扫多少。第1题中400 m2是一年级、二年级和六年级的同学要打扫的面积总和,是按1∶3∶4这个比来分的。要求一年级打扫多少、二年级打扫多少和六年级打扫多少。两题都已知要几个年级要打扫的面积总和,和几年级打扫的面积之比,要求几个年级分别打扫的面积。)
这种应用题,已知了几个数量的总和以及这几个数量的比,要求这几个数量,也就是要把一个数按一定的比分成几部分。所以这种应用题叫做按比分配应用题。
解答按比分配的应用题哪些方法呢?(解答按比分配的应用题时可以把比转化为份数,先求出总份数,再求出每份数,再用每份数×对应的份数=对应的数量。也可以把比转化为分数,先求出对应量占总量的几分之几,再用总量×对应的()()=对应的数量。)
(六)结合教材第49页例2再次巩固按比分配应用题的特征及解答方法。
三、巩固练习
教材第49页“做一做”,让学生用自己喜欢的方法独立解答,鼓励学生用不同的方法。
四、全课总结。
今天我们应用比解决了一些实际问题。你有什么收获?(什么叫按比分配?按比分配的.应用题有什么特征?解答按比分配的应用题有哪些方法?平均分是按比分配吗?生活中有哪些按比分配的实例?)
五、作业:
练习十二第1-4题。
按比分配教学设计 篇四
课题:按比例分配
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重点、难点:理解按比例分配实际问题的意义,掌握解题的关键。
对策:
引导学生分析明晰题意。
教学预案:
一、 基本训练:
1、根据信息你想到了什么?
六2班男生与女生的比是4:5
(1) 男生是4份,女生是5份,一共是9份;
(2) 男生相当于女生的4/5,女生相当于男生的5/4
(3) 男生占全班人数的4/9,女生占全班人数的5/9
2、根据已知条件回答问题:(第76页上第6题)
二、自主探究:
1、 出示例题5题目和方格图,让学生独立完成,先算一算,再涂一涂。
2、 组织交流:你是怎样解决这个问题的?你是怎样想的?
生1:根据红色与黄色方格数的比是3:2,可以想到:把30个方格平均分成5份,3份涂红色,黄色涂2份。
列成算式是:
30(3+2)=305=6(格) 每一份有几格
因为红色有这样的3份,所以红色:63=18(格)
因为黄色用这样的2份,所以黄色:62=12(格)
教师追问:怎样验证这个答案是正确的?
生2:根据红色与黄色方格数的比是3:2,可以想到:红色方格占总格数的3/5,黄色方格占总格数的2/5
列成算式:
红色:303/(3+2)=303/5=18(格)
黄色:302/(3+2)=302/5=12(格)
3、你是用哪种方法解决的?这两种方法你都理解吗?和你的同桌再说说解题思路。
三、理解体会:
1、出示第75页上的试一试:
(1) 齐读要求,提问:现在将这些方格按怎样的比来分配?说说1:2:3是什么意思?
(2) 独立完成,组织交流。
2、你觉得今天的问题已知什么?(已知总数和分配的比,将总数按一定比分割成几部分)要求的是什么?(将求按这样分配后的各部分的结果分别是多少?)
像这样,将总数按一定的比进行分割成几部分,我们称之为按比例分配问题。(出示课题:按比例分配问题。)
3、在解决时我们关键要理解是按怎样的比来分配。解答时可以怎样想?(转化成整数问题,先求出一份是多少?再求出这样的几份是多少?)还可以怎样想?(先转化成要求的量分别是总数的几比几,再按分数乘法问题进行计算)
四、巩固提高
1、练一练第1题:学生独立完成,指名板演,组织交流。
2、练一练第2题:提问:在这里将180块巧克力怎么分配?你从那句话中看出来的?帮助学生理解把180按35:31:24进行分配。
3、练习十四第2题:读题理解要求,引导学生看图估计出已用去的时间与剩余时间的比,并说出是怎样想的。(把图中的白色部分平均分成两份,可以看出已用去的时间与剩下时间的比大约是1:2。)那么这题实质是求什么?(将90分钟时间按1:2进行分配,求比赛剩下的时间是多少分?)
4、练习十四第4题:
先让学生独立思考一会儿,再组织交流:这题符合今天的特征吗?那要分配的总数是什么?(引导学生注意隐含条件:三角形的内角和是180度)现在你会解决吗?
5、补充:
出示一条线段,要求按1:5将线段分成两部分。
学生独立操作完成,组织交流。
五、全课总结:通过今天的学习,你有什么收获?
转化解答按比例分配问题的策略。
按比例分配是把一个数量按照一定的比进行分配。解决一些常见的、较简单的按比例分配问题,能在实际应用中加强比的概念。
按比例分配问题可以采用不同的思路和方法来解答。例5的编排在建立比的概念之后,适宜用比的知识解答。兔子卡通把比看作份数,小鸟卡通把比看作分数,都是从3∶2的具体含义出发,经过推理形成解题思路的。也可以先在教材的方格图上,通过涂色得到启发。如果每次涂5个方格,其中3个红色方格、2个黄色方格,那么要6次(305=6)刚好涂完。所以红色方格一共有3053=18(格),黄色方格一共有3052=12(格)。如果把方格图里的3行(列)涂红色、2行(列)涂黄色,那么就能直观看到红色方格是30格的3/5,黄色方格是30格的2/5,所以两种颜色的格数分别用303/5和302/5计算。
教学例题时要沟通两种解法的联系,要提倡小鸟卡通的方法,突出按比例分配问题转化成求一个数的几分之几是多少的问题,引导学生用分数乘法来解决问题。
试一试里出现了1∶2∶3,对连比的概念不需要作过多解释。学生会从两个数的比来体会这个连比的含义,只要能够说出红色方格占1份、黄色方格占2份、绿色方格占3份,就能应用解答例5的经验完成这道题。
练一练第2题给出了幼儿园大班、中班、小班各有的人数,把180块巧克力按班级人数的比分配。这道题变式呈现按比例分配的问题,没有直接给出班级人数比,要求学生根据人数先想出比,然后按比例分配。教师要重点帮助学生理解把180块巧克力按班级人数的比分给三个班就是把180按35:31:24进行分配。这道题还是解答练习十四第2、8题的平台。
课后反思:
本课时的教学内容是引导学生应用比的意义和基本性质解答有关按比例分配的实际问题。由于在学习比的意义时学生已能根据两个数量间的比用分数来表述两者的关系,所以在教学例题5时,我给学生充分独立思考和解答的时间,让学生自主进行探索。在交流解法时,很多学生思维活跃,发言积极,想出了很多种解法。这时我再及时引导学生将这些方法进行总结,并突出了用分数乘法来解题的这种方法。在新知的学习中,我还请学生思考如何进行检验,学生们联系题中的信息想到了可以将求出的两个数量组成比进行化简,再将这两个数量的和求出来,与已知信息进行比较进行检验。
整节数学课上,鼓励学生独立思考,主动探索,充分发挥学生学习主动性,课堂气氛活跃、和谐,提高了课堂教学效率的有效性。
课前思考:
按比例分配是一种分配思想,在生活生产中是很常见的。已学过的平均分配其实是按比例分配的一种特例。教学中要通过解决实际生活中的问题,让学生了解在生产生活中要把一个量按照一定的比例来分配,从而感悟按比例存在的价值。
学生在平时有一定的体验,所以在新知形成过程中,首先让学生根据原有的知识尝试解决问题,变被动接受学习为主动研究性学习。其次,鼓励解决问题策略的多样化,并充分展示学生的思考过程。在解决问题的过程中使学生体会到同一问题可以从不同角度去思考,得到不同解决问题的方法,这有利于学生多向思维的发展。
课后反思:
在练习十四第4题后,进行相应的练习后,出示一道练习题:一个三角形的三个内角度数的比是2∶3∶4,这个三角形是什么三角形?
生1:是锐角三角形,因为通过计算,我知道三个内角分别是40,60,80所以是锐角三角形。
师:你讲得非常好。
生2:不要把三个角都求出来,只要求一个最大的角就行了:1804/9=80,所以是锐角三角形。
师:你分析问题的方式很独特,分析得很有道理。
生3:其实一个角也不用求,就知道它是锐角三角形,因为三个角加起来是9份,而最大的角只占4份,没有达到9份的一半,也就是它的度数没有达到180的一半,所以是锐角三角形。
说句实在话,当时我都有点听蒙了。
师:哪个同学能把的想法重说一遍?
生4:
师:那如果三个内角的度数比是2∶3∶5呢?或者是2∶3∶7呢?又各是什么三角形呢?
反思中的反思:
学生是可畏的,更是可敬的。在练习阶段,学生能运用所学的知识和原有的经验解决问题,在宽松、和谐、民主的氛围中,学生思维是如此的活跃,方法是如此的灵活,体现了思维的价值,很好地诠释了尝试从不同角度寻求解决问题的方法,并能有效地解决问题的新课程精神。
课后反思:
这课内容按照知识点来划分属于按比例分配内容,解决这类问题的策略有两个:一是将比转化成份数来理解,先求出每一份是多少;二是将比转化成分数,然后按照分数应用题来解答。这两种方法共同的数学思想方法是转化。
在课堂教学中,学生能结合具体图例,自己想到这两种解答方法,在师生的进一步对话中,体会到用这两种方法解答时,都得渗透对应思想。
按比分配教学设计 篇五
教学目标:
知识与技能
理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,
能正确解答按比例分配应用题。培养学生应用知识解决实际问题的能力。
过程与方法
经历应用知识的过程,体验数学知识的应用价值。
情感态度与价值观
让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,
体验数学知识的应用价值。
教学重点:
理解按比分的意义,学会运用不同的方法解决按比分配的问题。
教学难点:
正确分析数量关系,灵活解决按比分配的实际问题。
小学六年级上册数学公开课 按比例分配优秀教学设计教案
教学准备:
多媒体课件
一、 热身练习
1、 修一段路,已经修的米数与剩下的米数的比是4 ∶5,可以把已修的米数看作( )份,剩下的就有( )份。这段路共有( )份已经修的是剩下的( ),剩下的是已修的(),已经修的占这段路的()剩下的占这段路的( )。
2、 李明、张强与黄华合办股份制食品有限公司,张强出资10万,李明出资20万元,黄华出资30万元,两年后盈利180万元,怎样分配利润才合理?
3、 拿自己配制的饮料,导出课题在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫做按比例分配。揭示课题
二、 新课探究
(一)展示例题:我把蜂蜜和水按1:4的比配制了一瓶500ml稀释液,其中蜂蜜的浓缩液和水的体积分别是多少?
1、 学生读题,找出不理解的语句,老师解释(浓缩液 稀释液)
2、 找出已知条件:500mL 1:4
(1)师:500是什么? (浓缩液体积和水的体积之和)
(2)师:1:4什么意思?能不能用自己的方式表示出这个比(3)从1:4这个比中可以得到什么信息?
3、 学生尝试解题。
4、 汇报
方法一:总份数:1+4=5每份:500÷5=100ml浓缩液:100×1=100ml水:100×4=400ml
方法二、总份数:1+4=5浓缩液:500× =100ml水:500×=400ml
5、 师评讲,小结方法
(二)做一做
1、 如果有140个橘子,按3︰2的比分给两个班,应该怎样分?
2、 学校把栽70棵树苗的任务按照六年级的三个班级的人数分配给各班,一班有46人,二班有44人,三班有50人。三个班各应栽多少棵?
(三)师生总结
这些都是“按比例分配”的问题。分配问题的一般思考步骤是:分什么?有多少?怎样分?
按比分配教学设计 篇六
教学目标:
1.进一步理解比的意义,掌握按比分配问题的特点及解题方法,能正确的解决按比分配的问题。
2.经历自主画图分析、将新知识与旧知识建立联系解决问题的过程,提高分析问题和解决问题的能力。
3.通过实例使学生感受到数学与生活的密切联系,感受数学的学习价值。
教学过程:
引入。
师:老师买了一瓶浓缩果汁,调制了三杯果汁水,我品尝了一下,你们想知道味道怎么样?(1号特别甜,3号特别淡,2号口感还不错)
师:都是用这瓶浓缩果汁调制的,味道怎么不一样?
师:这三杯果汁水都是我按照浓缩果汁和水一定的比配制的,浓缩果汁和水的比分别是1:9、1:4和1:1,根据品尝的结果,把果汁水和相应的比连一连。
1号(特别甜)浓缩果汁和水的比是1:9
2号(还不错)浓缩果汁和水的比是1:4
3号(很淡) 浓缩果汁和水的比是1:1
师:每袋浓缩果汁的包装袋上都有调制建议,标明了浓缩果汁
和水的体积比,看来正如说明书上所说,按1:4的比配置的果汁水口感最佳。
师:我们在解决问题时,要经历哪几个步骤?
生:阅读与理解、分析与解答、回顾与反思。(板书)
1.自己分析,独立解答。
师:通过阅读这道题目,我们知道了哪些信息?互相说说 生:500毫升是稀释后果汁水的体积
(板书: 500毫升 果汁水)
按1:4的比配置的。
(板书: 浓缩果汁:水)
1: 4
要求的是浓缩果汁和水的体积。
师:你是怎么理解1:4的?用你喜欢的方式写一写、画一画。然后解答这道题。
(要求:先独立完成、再在小组内交流)
2.汇报。
(1)怎样理解1:4。
预设:①浓缩液是这样的1份,水是这样的4份,冲好的果汁一共是这样的5份。
(板书: 果汁 1份
水4份
果汁水 5份)
②1份 4份
③1份 4份
④把冲好的果汁看作单位“1”,浓缩液占总量的,水占总量的。
师:第4种方法与前三种有什么相同点?有什么不同?
( 不仅看出了1份4份,还看出了每部份和总量之间的关系) (板书:浓缩果汁占果汁水的水占果汁水的)
师:有的同学利用文字,有的同学通过画图,都是在表达你们对于1:4的理解,概括的说你们都分析出什么了?
生:分析出浓缩液和水的关系,分析出每部分和总量的关系。 师:那我们对1:4的理解对解题有帮助吗?好,下面我们一起交流解答的方法。
(2)汇报解题过程。
45151545
①归一思路:浓缩液是这样的1份,水是这样的4份,总体积平均分成5份。
500÷(4+1)=100(毫升)
浓缩果汁:100×1=100(毫升)
水: 100×4=400(毫升)
②利用分数乘法解答:
1=100(毫升) 1+44水: 500×=400(毫升) 1+4浓缩果汁: 500×
师:怎么想到用分数解决的?
师:要转化成用分数解答,关键是什么?
3.回顾与反思。
师:我们已经分析解答了这道题,接下来我们该。。生:回顾与反思。
(1)检验结果是否正确。
看浓缩液和水的体积比是否是1:4。
和是否是500毫升。
师:为什么要从两方面检验。
(2)回顾解题过程。
做了哪些事?首先着重理解了1:4的意义
解答。解答时同学们用到了不同的方法,有的用到了小份的方法,有的用到了分数乘法。
师:正像你们所说的,首先我们对1:4进行了理解。不同的
理解,解题的方法不同;分析的越全面、深入,方法越多样。
4情境延伸。
师:特甜的这杯水我也配置了500毫升,你知道我放了多少浓缩果汁?多少水吗?
特别淡的这杯水呢?
师:刚才我们解答的这类题都是把一个数量按照一定的比进行分配,然后求出每部分各是多少,我们把这样的问题也叫做按比分配的问题。你们会解答了吗?