二次函数的教学反思(优选6篇)

时间:2014-07-03 04:17:31
染雾
分享
WORD下载 PDF下载 投诉

二次函数的教学反思 篇一

在教学中,二次函数是高中数学中非常重要的一个内容,也是学生比较难以理解和掌握的知识之一。通过长期的教学实践,我对二次函数的教学进行了一些反思和总结。

首先,我发现在教学二次函数时,很多学生对于二次函数的概念和性质并不是非常清楚。他们往往只是死记硬背一些公式和定理,而没有深入理解其中的数学原理。因此,在教学中,我更加注重引导学生去理解二次函数的定义、性质和图像,而不是单纯地进行机械的计算和运用。

其次,我认为在教学中应该注重培养学生的数学思维和解决问题的能力。二次函数不仅仅是一种数学工具,更是一种解决实际问题的数学模型。因此,我在教学中更加注重引导学生去应用二次函数解决实际问题,培养他们的数学建模能力和创新思维。

另外,在教学中,我也发现很多学生对于二次函数的图像并不是很熟悉,很难通过图像来理解二次函数的性质和变化规律。因此,我在教学中增加了更多的图像展示和实例分析,让学生通过观察图像来理解二次函数的性质和特点,从而更好地掌握相关知识。

综上所述,通过对二次函数的教学反思和总结,我认为在教学中应该注重引导学生理解概念、培养解决问题的能力、加强图像的展示和分析,从而提高学生的学习兴趣和学习效果,让他们真正掌握二次函数的知识和应用。

二次函数的教学反思 篇二

二次函数是高中数学中的一个重要内容,也是学生们比较容易感到困惑的知识点之一。在教学二次函数的过程中,我也遇到了一些困难和挑战,对此进行了一些反思和总结。

首先,我发现很多学生在学习二次函数时缺乏足够的数学基础知识和技能。他们对于代数运算和函数概念的理解并不够深入,导致在学习二次函数时出现了困难和障碍。因此,在教学中,我更加注重对学生的基础知识进行巩固和强化,提高他们的代数运算能力和函数概念的理解。

其次,我认为在教学二次函数时应该注重培养学生的数学思维和问题解决能力。二次函数是一种数学模型,可以用来解决各种实际问题。因此,在教学中,我更加注重引导学生去应用二次函数解决各种实际问题,培养他们的数学建模能力和创新思维。

另外,我也发现很多学生在学习二次函数时缺乏实践和动手能力。他们往往只是停留在理论的层面,缺乏实际操作和实践的机会。因此,在教学中,我增加了更多的实例分析和问题求解,让学生通过实际操作和动手实践来更好地理解和掌握二次函数的知识。

综上所述,通过对二次函数的教学反思和总结,我认为在教学中应该注重学生的基础知识、培养数学思维和解决问题的能力、加强实践和动手能力,从而提高学生的学习兴趣和学习效果,让他们更好地掌握和应用二次函数的知识。

二次函数的教学反思 篇三

  在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。

  本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义。建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程。体验用函数思想去描述、研究变量之间变化规律的意义。接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。

  本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。

  二次函数中含有三个字母系数,因此确定其解析式要三个独立的条件,用待定系数法来解。学习确定二次函数的一般式,即的形式,这方面,学生的学习情况还是比较理想的,但方法没有问题,计算能力还有待加强。

  在学习了二次函数的知识后,我们尝试运用于解决三个实际问题。问题1是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。虽然有部分学生尚不能熟练解决相关应用问题,但在下面的学习中会得到补充和提高。

  但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。 总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

二次函数的教学反思 篇四

  本课是二次函数的图像和性质发展的必然结果,实现了与前面二次函数定义的呼应,使学生心中的困惑得到了最终的解释,通过图像和配方描述一般形式的二次函数的性质是本课的重点,最终达到不同二次函数表达式融会贯通,学习本课的基础在于对一元二次方程配方法和对形如顶点式的函数图像与性质的熟练掌握,纵观整个课堂及效果,我觉得有以下两个好的方面值得继续保持。

  1、夯实了本课学习的基础。从一元二次方程配方的回顾学习到顶点式函数图像性质的回顾研究入手,为二次函数一般形式的图像性质研究奠定了基础,为本课的顺利进行提供了保障。

  2、本节课我注重学生探索中发现规律,培养学生归纳总结知识的习惯,这样调动了学生学习的积极性,体现了学生的主体地位,整洁课堂学生都参与其中,检测的效果也很好,有这样一句话:“没有学生的课堂,讲的再精彩也是徒劳”,但是这节课我个人感觉学生都在课堂,几个例题难度适中,学生通过配方准确无误的找出了对称轴、写出了顶点坐标。

  一堂精彩的课堂是教不出优秀的学生的,只有做到堂堂都能像今天的课堂这样的效果,学生才能学得轻松,教师才能教的轻松,这才是现代教育提倡的课堂。所以接下来的日子自己备课不但要在知识上下功夫,更多的我想应该去备学生,要在备课之余在自己的心理上一堂课,从中发现不足,进而改进,力求达到课堂效果的最优化,让更多的孩子享受学习的乐趣,让他们愿意去学习。

二次函数的教学反思 篇五

  昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

  由于九年级学生已经具备一定的抽象思维能力,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采用类比的方法在学生预习自学的基础上放手让学生大胆地猜想、交流,分组合作,同时设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。在知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。

  总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”这一《新课程标准》的精神,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了一定的教学效果,我再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题。

二次函数的教学反思 篇六

  这节课在学习了二次函数的基本形式和二次函数的图象、顶点坐标、对称轴等性质的基础上来学习用二次函数解决实际问题。学生对前面所学的知识已经掌握,但综合应用能力较差。因此在教学设计时将本节知识分两课时进行,这节是第一课时,从课堂上学生的反应和课堂练习可知本节课教学效果较好,大部分学生能准确分析题意并能写出函数关系式,培养了学生理论联系实际的能力和分析问题的能力;但在确定自变量的取值范围和函数的最值时只有少数学习较好的学生能准确解答,这说明稍复杂的数量关系分析是学生的难点,单一的知识应用能准确找到解决途径,而综合起来应用学生就有些茫然,无法确定切入点。

  本节课在两个地方学生出现疑难:一是分析题意时理不清价格和数量之间的对应关系;二是不能准确判断自变量的取值范围和函数的最值。对于这些难点我是这样处理的:

  首先在回顾了前面的知识点后提出实际问题:某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?在分析题意时学生能分清涨价、降价所对应的商品销量,但一小部分学生依教材上的解题思路不能理解售价和销量之间的对应关系。对于这个难点我是这样处理的:设每涨x个1元,则每件售价为(60+x)元,少卖出10x件,共卖出(300—10x)件;每降价x个1元,则每件售价为(60-x)元,多卖出20x件,共卖出(300+x)件。重点强调“x个”!虽然在分析中只多了个“每(涨或降)…个1元”,但就这几个字却能帮一部分学生理清关系和思路,如涨3元8元的问题,则售价为(60+3x)元或(60+8x)元,这样学生从最小单元开始分析,逐层递进,很容易理清思路找准关系。这个关系弄清了,函数关系自然水到渠成就写出来了。

  其次是由函数解析式确定最大值,而确定最值时必须考虑实际问题中自变量的取值范围。在这个问题中x首先是非负数,同时(300—10x)也是非负数,所以x大于等于0且小于等于30。结合函数解析式y=-10x2+100x+6000可知该函数图象开口向下,有最大值。由顶点坐标公式可以计算出当x=5时(在自变量的取值范围内),y有最大值,且此时y=6250。强调此时不仅要考虑顶点坐标公式,还要结合题意看这个x值是否在其取值范围内。x值确定后将其代入就可求出最值y的大小。

  从学生课堂练习来看,大部分学生会用这个分析方法解决相应问题。虽然这节课没能按课时安排学习探究二的问题,但学生能掌握商品涨(降)价与售价、利润间这类问题的分析并会列函数关系也算是一点点收获了。

二次函数的教学反思(优选6篇)

手机扫码分享

Top