等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的。下面是小编收集整理的等腰三角形的教学设计,希望对您有所帮助!
教材分析
《等腰三角形》是山东教育出版社义务教育课程实验教科书八年级数学上册第一章。等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的。它不仅是对前面所学知识的综合应用,也是后面研究等边三角形等内容的预备知识,同时也是今后证明角相等、线段相等及两直线垂直的重用依据。
学情分析
学生在前面已接触过轴对称和全等三角形的有关知识,所以等腰三角形的这两个性质学生可以通过折叠发现,并用全等三角形的性质加以证明而通过探究等腰三角形的“三线合一”的性质,可以激发学生浓厚的学习数学的兴趣,使学生体会性质定理的来龙去脉;了解、感知知识发生、发展的全过程;拓宽学生探索图形变化的视野。掌握等腰三角形及其性质在生活中的应用,更有益于学生了解数学价值,体会数学来源于生活,并应用于生活。
本节课主要通过小组合作、交流解决疑难问题,并在教师设疑与学生设疑、教师引导与学生讲解、教师评价与学生评价相结合中实施差异合作教学。
背景介绍
新课程中等腰三角形的性质不是通过论证得出的,而是让学生动手操作,通过等腰三角形的轴对称变换得出的。在上“轴对称的认识”一节时,我引导学生采用折纸的方法,较为成功地得出了线段的中垂线、角平分线的性质。我考虑本节内容也能否让学生通过折纸的方法,实验、探索、归纳得出相关的结论呢?于是我进行了大胆地尝试。
教学目标
(一)知识目标
学优生通过启发引导探究出几何推理的方法得到等腰三角形的性质;中等生、学困生通过动手操作验证等腰三角形的性质。在复杂图形中正确运用“三线合一”的方法应予以指导,安排分层次的习题,以适应不同学生的需要。
(二)能力目标
发展学生的思考能力、语言表达能力和推理问题的能力,深化逆向思维能力和综合应用问题能力。
(三)情感目标
培养学生自信心、合作能力、竞争意识以及勇于探索的精神。
课堂教学活动过程:
1、创设情境,引出课题
活动一:多媒体展示图片
学生活动:学生欣赏图片,感受生活中等腰三角形的数学美.
【目的】:通过图片的展示,让学生感受到生活中处处都有等腰三角形,体会数学来源于生活,激发学生探究的积极性,并由此引入课题。
2、实验操作,探究规律
活动二 :操作体验
师:什么叫等腰三角形?知道等腰三角形你能得到什么结论?
生:两条边相等的三角形是等腰三角形。等腰三角形的两个底角相等。
师:等腰三角形还有别的特点吗?请同学们通过动手折叠等腰三角形(纸片)进行探究。
学生动手操作,同桌交流实验结果。
师:说说你的发现。并向大家展示一下,你是怎样发现这个结论的?
【自评】:此时学优生和中等生能够发现结论,而学困生能折出来,但不能用语言阐述,所以老师只能让学优生和中等生回答。通过动手,加深学生对知识形成过程的理解,发展学生的思维能力、动手操作能力和数学语言表达能力。让不同层次的学生进行回答,激发学生的求知欲,培养学生的探索意识和创新精神。
师:折痕是等腰三角形中的什么线段?
生:顶角的角平分线。(有的答底边上的高或底边上的高。)
师:是不是想告诉我们等腰三角形顶角的平分线也是底边上的中线和高线?
生:是。
师:还想告诉我们什么?
生:等腰三角形底边上的中线也是顶角的平分线和底边上的高线.
师:非常聪明。还想告诉我们什么?
生:等腰三角形底边上的高线也是顶角的平分线和底边上的中线.
师:那就是说等腰三角形的“三线合一”实际上有几层意义?
生:三层。
师板书性质定理的内容。
师:你能用几何推理的方法证得等腰三角形“三线合一”这一性质定理吗?(师把图和已知、求证写在黑板上)
【自评】:加强知识形成过程的教学,不断完善知识体系,教给学生分析问题的方法。让学优生通过启发引导探究出几何推理的方法得到“三线合一”,中等生、学困生通过动手操作验证“三线合一”即可。
师:在等腰三角形中,如果出现这“三线”中
的“一线”时,同学们会联想到什么?生:另外“两线”。
师:这三层意义能不能分别用符号语言表示?
自评:优等生能够表述几何语言,中等生和学困生就有困难,他们只能是从动手操作的过程中形象地认知,并不能上升到理论的高度来总结。
师板演:
①∵AB =AC, BD =CD
∴∠BAD = ∠CAD, AD ⊥BC
②∵AB =AC, AD ⊥BC
∴∠BAD = ∠CAD, BD =CD
③∵AB =AC, ∠BAD = ∠CAD
∴BD =CD, AD⊥BC
师:这三段推理有什么共同的特点?
生:有一个条件推出其余的两个条件。
师:是有一个条件推出的吗?
生:再加上等腰三角形这个条件。
师:非常好。等腰三角形“三线合一”是说明两个角相等、两条线段相等或垂直的重要依据。以后我们就可以用“三线合一”的三段推理去证明或解决其它的问题。
自评:对于定理的学习,学生要从理解到会应用是有一个过程的,等腰三角形的“三线合一”这一定理的学习难点就是怎样去应用。我把教材这样处理,不但要使全体学生透彻的理解了这一定理,更让学优生知道这一定理的几何推理过程,为这一定理的应用打下了基础。设计好了这一思路后,我采用互动式教学法,通过师生对话和学生的操作和思考,使学生掌握等腰三角形的“三线合一”性质,从而发展其空间观念,并为定理的应用打下了坚实的基础。
3、应用新知,尝试成功
尝试练习一:
(1)如果等腰三角形的一个底角为50°,则其余两个角为
(2)如果等腰三角形的顶角为80°,则它的一个底角为
(3)如果等腰三角形的一个外角为70°,则它的三个内角为
(4)如果等腰三角形的一个外角为100°,则它的三个内角为
【意图】:通过本练习,巩固理角等腰三角形“等边对等角”的性质和等边三角形的性质;特别通过练习(4)设计,得出不同的结果,培养学生思维的开放性与灵活性。
尝试练习二:
如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。这根房梁是否保持水平呢?为什么?
【意图】:此例与引入课题时提出的问题模型呼应,体现了数学来源于实践,反过来又作用于实践的辩证唯物主义的观点。培养学生学数学,用数学的意识。
4、课堂小结,掌握方法
(1)小结本堂课的收获。(学生畅所欲言)
(2)掌握方法:等腰三角形的性质提供了说明两角相等的常用方法;“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据。
5、布置作业,课外拓展
(略)
【设计体会】:
在数学活动中如何真正让每一位学生积极行动起来,能提出自己的方法和建议,成为数学活动中的一分子,培养学生相对独立地获取知识和能力,逐步学会运用分析、类比、转化等方法。本课例中围绕一个“折”字较为成功地体现了这一点。
在新授课的差异教学中,我认为最重要的是课堂环节的安排和问题的设置。有效的课堂提问必须清楚、明确、具有启发性,要考虑到不同层次的学生的心理特点、认知特点,适应学生的认识水平。通过分层测试使学生掌握等腰三角形的性质,并能初步运用。满足不同学生的需求,促进全体学生健康发展。帮助学生反思学习过程,使学生树立成功者的自信。
[等腰三角形的教学设计]