初三数学知识点总结

时间:2014-06-03 03:34:18
染雾
分享
WORD下载 PDF下载 投诉

初三数学知识点总结(通用5篇)

  总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以使我们更有效率,为此要我们写一份总结。你想知道总结怎么写吗?下面是小编收集整理的初三数学知识点总结(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

  初三数学知识点总结1

  一、基本概念

  1、方程、方程的解(根)、方程组的解、解方程(组)

  2、分类:

  二、解方程的依据—等式性质

  1、a=ba+c=b+c

  2、a=bac=bc(c0)

  三、解法

  1、一元一次方程的解法:去分母去括号移项合并同类项

  系数化成1解。

  2、元一次方程组的解法:

  ⑴基本思想:消元

  ⑵方法:

  ①代入法

  ②加减法

  四、一元二次方程

  1、定义及一般形式:

  2、解法:

  ⑴直接开平方法(注意特征)

  ⑵配方法(注意步骤—推倒求根公式)

  ⑶公式法:

  ⑷因式分解法(特征:左边=0)

  3、根的判别式:

  4、根与系数顶的关系:

  逆定理:若,则以为根的一元二次方程是:

  5、常用等式:

  五、可化为一元二次方程的方程

  1、分式方程

  ⑴定义

  ⑵基本思想:

  ⑶基本解法:

  ①去分母法

  ②换元法

  ⑷验根及方法

  2、无理方程

  ⑴定义

  ⑵基本思想:

  ⑶基本解法:

  ①乘方法(注意技巧!)

  ②换元法

  ⑷验根及方法

  3、简单的二元二次方程组

  由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

  六、列方程(组)解应用题

  一概述

  列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

  ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

  ⑵设元(未知数)。

  ①直接未知数

  ②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

  ⑶用含未知数的代数式表示相关的量。

  ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

  ⑸解方程及检验。

  ⑹答案。

  综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  二常用的相等关系

  1、行程问题(匀速运动)

  基本关系:s=vt

  ⑴相遇问题(同时出发):

  ⑵追及问题(同时出发):

  若甲出发t小时后,乙才出发,而后在B处追上甲,则

  ⑶水中航行:

  2、配料问题:溶质=溶液浓度

  溶液=溶质+溶剂

  3、增长率问题:

  4、工程问题:基本关系:工作量=工作效率工作时间(常把工作量看着单位1)。

  5、几何问题:常用勾股定理,几何体的`面积、体积公式,相似形及有关比例性质等。

  三注意语言与解析式的互化

  如,多、少、增加了、增加为(到)、同时、扩大为(到)、扩大了。

  又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

  四注意从语言叙述中写出相等关系。

  如,x比y大3,则x—y=3或x=y+3或x—3=y。又如,x与y的差为3,则x—y=3。五注意单位换算。

  如,小时分钟的换算;s、v、t单位的一致等。

  七、应用举例(略)

  第六章一元一次不等式(组)

  重点一元一次不等式的性质、解法

  ☆内容提要☆

  1、定义:ab、a

  2、一元一次不等式:axb、ax

  3、一元一次不等式组:

  4、不等式的性质:⑴aa+cb+c

  ⑵abc(c0)

  ⑶aac

  ⑷(传递性)acc

  ⑸ada+cb+d、

  5、一元一次不等式的解、解一元一次不等式

  6、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

  7、应用举例(略)

  初三数学知识点总结2

  1、圆、圆心、半径、直径、圆弧、弦、半圆的定义

  2、垂直于弦的直径

  圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;

  垂直于弦的直径平分弦,并且平方弦所对的两条弧;

  平分弦的直径垂直弦,并且平分弦所对的两条弧。

  3、弧、弦、圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

  4、圆周角

  在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

  半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

  5、点和圆的位置关系

  点在圆外

  点在圆上d=r

  点在圆内d

  定理:不在同一条直线上的三个点确定一个圆。

  三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

  6、直线和圆的位置关系

  相交d

  相切d=r

  相离d>r

  切线的性质定理:圆的切线垂直于过切点的半径;

  切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;

  切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

  三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

  7、圆和圆的位置关系

  外离d>R+r

  外切d=R+r

  相交R—r

  内切d=R—r

  内含d

  8、正多边形和圆

  正多边形的中心:外接圆的圆心

  正多边形的半径:外接圆的半径

  正多边形的中心角:没边所对的圆心角

  正多边形的边心距:中心到一边的距离

  9、弧长和扇形面积

  弧长

  扇形面积:

  10、圆锥的侧面积和全面积

  侧面积:

  全面积

  11、(附加)相交弦定理、切割线定理

  第五章概率初步

  1、概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。

  2、用列举法求概率

  一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=

  3、用频率去估计概率

  初三数学知识点总结3

  1、矩形的概念

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)具有平行四边形的一切性质。

  (2)矩形的四个角都是直角。

  (3)矩形的对角线相等。

  (4)矩形是轴对称图形。

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形。

  (2)定理1:有三个角是直角的四边形是矩形。

  (3)定理2:对角线相等的平行四边形是矩形。

  4、矩形的面积:S矩形=长×宽=ab

  初三数学重点知识点(四)

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

  初三数学知识点总结4

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角。

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等。

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角。

  3、中心对称:

  把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  6、坐标系中的中心对称

  两个点关于原点对称时,它们的坐标符号相反,

  即点P(x,y)关于原点O的对称点P(—x,—y)。

  初三数学知识点总结5

  定义

  只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle—variable quadratice quation)。

  一元二次方程有三个特点:

  (1)含有一个未知数;

  (2)且未知数的最高次数是2;

  (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(a0)的形式,则这个方程就为一元二次方程。里面要有等号,且分母里不含未知数。

  补充说明

  3、方程的两根与方程中各数有如下关系:X1+X2=—b/a,X1X2=c/a(也称韦达定理)。

  4、方程两根为x1,x2时,方程为:x2—(x1+x2)X+x1x2=0(根据韦达定理逆推而得)。

  5、在系数a0的情况下,b2—4ac0时有2个不相等的实数根,b2—4ac=0时有两个相等的实数根,b2—4ac0时无实数根。(在复数范围内有两个复数根)。

  一般式

  ax2+bx+c=0(a、b、c是实数,a0)

  例如:x2+2x+1=0

  配方式

  a(x+b/2a)2=(b2—4ac)/4a

  两根式(交点式)

  a(x—x1)(x—x2)=0

初三数学知识点总结

手机扫码分享

Top