函数数学教案(推荐6篇)

时间:2018-09-07 08:15:49
染雾
分享
WORD下载 PDF下载 投诉

函数数学教案 篇一

在数学教学中,函数是一个非常重要的概念,它是描述变量之间关系的一种数学工具。在教学中,如何教授函数概念并帮助学生掌握函数的应用是教师们需要认真思考和准备的问题。

首先,在教授函数概念时,可以从实际生活中的例子入手,引导学生理解函数的定义和特点。例如,可以通过温度和时间的关系、价格和数量的关系等实际例子来引导学生理解函数的概念,帮助他们建立起对函数的直观认识。同时,可以通过图像和表格的形式展示函数的变化规律,让学生通过观察和分析来感受函数的特点。

其次,在函数的应用过程中,可以设计一些生活化的问题,让学生通过解决实际问题来应用函数的知识。例如,可以设计购物问题、运动问题等,让学生通过建立函数模型来解决这些问题,培养他们应用函数的能力。同时,可以引导学生思考函数的意义,帮助他们理解函数在实际生活中的作用和应用价值。

另外,在教学过程中,可以通过课堂讨论、小组合作等形式来促进学生的学习。可以设计一些小组活动,让学生合作解决问题,通过讨论和交流来加深对函数的理解。同时,可以设计一些实验活动,让学生通过实际操作来感受函数的变化规律,激发他们对数学的兴趣和探究欲望。

总之,在教学函数的过程中,教师需要注重引导学生建立对函数的直观认识,培养他们应用函数的能力,激发他们对数学的兴趣。通过生活化的例子、实际问题的应用和多样化的教学形式,帮助学生掌握函数的概念和方法,提高他们的数学学习能力和解决问题的能力。函数数学教案的设计和实施,需要教师不断探索和尝试,以提高教学效果和促进学生全面发展。

函数数学教案 篇二

在数学教学中,函数是一个重要的概念,它不仅是数学学科的基础,也是其他学科如物理、化学等领域的重要工具。在教学函数时,如何引导学生掌握函数的基本概念和方法,提高他们的数学能力和应用能力是教师们需要思考和努力的问题。

首先,在教学函数的过程中,可以通过引入函数的图像和表格来帮助学生理解函数的变化规律。可以通过绘制函数的图像和列举函数的表格来展示函数的特点和规律,让学生通过观察和分析来感受函数的变化过程,从而加深对函数的理解。

其次,在函数的应用过程中,可以设计一些实际问题,让学生通过建立函数模型来解决问题。例如,可以设计温度变化问题、速度变化问题等,让学生通过建立函数模型来分析和解决这些问题,培养他们应用函数的能力。同时,可以引导学生思考函数的意义和作用,帮助他们理解函数在实际生活中的应用价值。

另外,在教学过程中,可以通过课堂讨论、小组合作等形式来促进学生的学习。可以设计一些小组活动,让学生合作解决问题,通过讨论和交流来加深对函数的理解。同时,可以设计一些拓展活动,让学生通过实践探究函数的更多应用和发展,激发他们对数学的兴趣和探究欲望。

总之,在教学函数的过程中,教师需要注重引导学生建立对函数的直观认识,培养他们应用函数的能力,激发他们对数学的兴趣。通过引入图像和表格、设计实际问题的应用和开展多样化的教学活动,帮助学生掌握函数的概念和方法,提高他们的数学学习能力和解决问题的能力。函数数学教案的设计和实施,需要教师不断创新和完善,以提高教学质量和促进学生全面发展。

函数数学教案 篇三

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0(当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

函数数学教案 篇四

  一、知识与技能

  1、能灵活列反比例函数表达式解决一些实际问题。

  2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。

  二、过程与方法

  1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

  2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

  三、情感态度与价值观

  1、积极参与交流,并积极发表意见。

  2、体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

  教学重点

  掌握从物理问题中建构反比例函数模型。

  教学难点

  从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

  教具准备

  多媒体课件。

  教学过程

  一、创设问题情境,引入新课

  活动1

  问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。下面的例子就是其中之一。

  在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

  (1)求I与R之间的函数关系式;

  (2)当电流I=0.5时,求电阻R的值。

  设计意图:

  运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力。

  师生行为:

  可由学生独立思考,领会反比例函数在物理学中的综合应用。

  教师应给“学困生”一点物理学知识的引导。

  师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值。

  生:(1)解:设I=kR∵R=5,I=2,于是

  2=k5,所以k=10,I=10R。

  (2)当I=0.5时,R=10I=100.5=20(欧姆)。

  师:很好!“给我一个支点,我可以把地球撬动。”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?

  生:这是古希腊科学家阿基米德的名言。

  师:是的。公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

  阻力阻力臂=动力动力臂

  下面我们就来看一例子。

  二、讲授新课

  活动2

  小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。

  (1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

  (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

  设计意图:

  物理学中的很多量之间的变化是反比例函数关系。因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用。

  师生行为:

  先由学生根据“杠杆定律”解决上述问题。

  教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系。

函数数学教案 篇五

  一、学生起点分析

  在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。

  二、教学任务分析

  《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。

  本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。一次本节课教学目标定位为:

  1、初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;

  2、根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;

  3、了解函数的三种表示方法。

  4、通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;

  5、在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神

  对学生来讲本节课的难点在于对函数概念的理解;

  四、教学准备

  教具:教材,课件,电脑

  学具:教材,笔,练习本

  五、教学过程设计

  本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业

  第一环节:创设情境、导入新课

  内容:

  展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。

  意图:

  承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

  效果:

  生活实例,激发了学生的研究热情,起到很好的导入效果。

  第二环节:展现背景,提供概念抽象的素材

  内容:

  问题1、你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?

  当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?

  摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系。你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?

  问题2、瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。随着层数的增加,物体的总数是如何变化的?

  问题3、一定质量的气体在体积不变时,假若温度降低到—273℃,则气体的压强为零。因此,物理学把—273℃作为热力学温度的零度。热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0。

  (1)当t分别等于—43,—27,0,18时,相应的热力学温度T是多少?

  (2)给定一个大于—273℃的t值,你能求出相应的T值吗?

  意图:

  通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等)。

  效果:

  通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点。

  第三环节:概念的抽象

  内容:

  1、引导学生思考以上三个问题的共同点,进而揭示出函数的概念:

  在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的.值。

  4、1函数:同步检测

  1、张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,如图是据此情境画出的图象,请你回答下面的问题:

  (1)张爷爷是在什么地方碰到老邻居的,交谈了多长时间?

  (2)读报栏大约离家多远?

  (3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?

函数数学教案 篇六

  重点难点教学:

  1.正确理解映射的概念;

  2.函数相等的两个条件;

  3.求函数的定义域和值域。

  一.教学过程:

  1.学生熟练掌握函数的概念和映射的定义;

  2.使学生能够根据已知条件求出函数的定义域和值域;

  3.使学生掌握函数的三种表示方法。

  二.教学内容:

1.函数的定义

  设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:

  (),yfxxA

  其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。显然,值域是集合B的子集。

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素定义域、对应关系和值域。

  3、映射的定义

  设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

  一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

  4.区间及写法:

  设a、b是两个实数,且a

  (1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

  (2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

  5.函数的三种表示方法①解析法②列表法③图像法

函数数学教案(推荐6篇)

手机扫码分享

Top