八年级数学上册《一次函数的图象应用》优秀教案 篇一
在八年级数学上册中,学习一次函数的图象应用对于学生来说是一个重要的知识点。一次函数是一种非常基础的数学函数,通过学习一次函数的图象应用,不仅可以帮助学生理解数学知识,还可以培养学生的逻辑思维能力和数学解决问题的能力。下面将介绍一份优秀的一次函数的图象应用教案。
本教案主要围绕一次函数的图象应用展开,通过引入一个生活中的实际问题,让学生了解到一次函数在现实生活中的应用。首先,通过引入一个物体自由落体的例子,让学生了解到自由落体运动可以用一次函数来描述。然后,通过给出一个实际的自由落体运动数据表,让学生根据数据表中的数据绘制出自由落体运动的图象,并回答相关问题。通过这个例子,学生可以深入理解一次函数的概念,并了解到一次函数在解决实际问题中的应用。
接下来,教案引入了一次函数的图象性质,让学生了解到一次函数的图象是一条直线,并且通过一次函数的图象可以了解到一次函数的增减性和零点。通过给出一些一次函数的图象,让学生分析图象的特点,并回答相关问题,从而加深对一次函数图象性质的理解。
最后,教案设计了一些练习题,让学生巩固所学的知识。通过这些练习题,学生可以进一步加深对一次函数的理解,提高解决问题的能力。同时,教案还设计了一些拓展题,让学生进行思考和探究,培养学生的创新精神和解决问题的能力。
通过这份优秀的一次函数的图象应用教案,学生不仅可以掌握一次函数的基本概念和性质,还可以了解到一次函数在现实生活中的应用。希望学生在学习过程中能够认真对待,积极思考,提高数学解决问题的能力。
八年级数学上册《一次函数的图象应用》优秀教案 篇二
在八年级数学上册中,学习一次函数的图象应用是一个重要的知识点。一次函数是数学中的基础知识,通过学习一次函数的图象应用,可以帮助学生理解数学知识,提高数学解决问题的能力。下面将介绍另一份优秀的一次函数的图象应用教案。
这份教案主要通过引入一个购物优惠活动的例子,让学生了解到一次函数在实际生活中的应用。通过给出一些商品的价格和折扣信息,让学生根据这些信息绘制出商品价格随时间变化的图象,并回答相关问题。通过这个例子,学生可以了解到一次函数在解决实际生活问题中的应用,并加深对一次函数的理解。
接下来,教案引入了一次函数的斜率和截距的概念,让学生了解到一次函数的斜率代表了函数的增减趋势,截距代表了函数的零点。通过给出一些一次函数的图象,让学生计算函数的斜率和截距,并分析函数的性质。通过这个部分的学习,学生可以加深对一次函数的图象性质的理解。
最后,教案设计了一些实际问题的练习题,让学生应用所学的知识解决实际问题。通过这些练习题,学生可以提高解决问题的能力,培养数学思维和创新能力。同时,教案还设计了一些拓展题,让学生进行思考和探究,拓展数学知识的应用范围。
通过这份优秀的一次函数的图象应用教案,学生可以不仅可以掌握一次函数的基本概念和性质,还可以了解到一次函数在实际生活中的应用。希望学生在学习过程中能够认真对待,积极思考,提高数学解决问题的能力。
八年级数学上册《一次函数的图象应用》优秀教案 篇三
人教版八年级数学上册《一次函数的图象应用》优秀教案
教学目标
1.知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.
2.过程与方法
经历探索一次函数的应用问题,发展抽象思维.
3.情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.
重、难点与关键
1.重点:一次函数的应用.
2.难点:一次函数的应用.
3.关键:从数形结合分析思路入手,提升应用思维.
教学方法
采用“讲练结合”的.教学方法,让学生逐步地熟悉一次函数的应用.
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习.
三、课堂总结,发展潜能
由学生自我评价本节课的表现.
四、布置作业,专题突破
课本P120习题14.2第9,10,11题.
板书设计
14.2.2一次函数(4)
1、一次函数的应用例:
练习: