数学教案平方根 篇一
平方根的概念及计算方法
平方根是数学中一个基础且重要的概念,它是指一个数的平方等于给定的数。在教学中,如何教授学生正确理解平方根的概念并掌握计算方法是至关重要的。本篇将介绍平方根的概念及计算方法,并结合实例进行详细解释。
首先,让我们来理解平方根的定义。对于一个非负数x,如果存在一个非负数y,使得y的平方等于x,那么y就是x的平方根,记作√x。例如,√4=2,因为2的平方等于4。需要注意的是,负数没有实数平方根,因此平方根的定义仅适用于非负数。
接下来,我们来介绍平方根的计算方法。对于一个非负数x,我们可以通过不断试探来逼近它的平方根。一种常用的方法是牛顿迭代法。以求解√a的值为例,我们可以通过以下迭代公式来逼近√a的值:
\[x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})\]
其中,\(x_n\)是第n次迭代的近似值。通过不断迭代,我们可以逼近√a的值。
除了牛顿迭代法,我们还可以通过长除法或使用计算器等方法来求解平方根。在教学中,可以通过实际的例题引导学生掌握不同的计算方法,培养他们的解决问题能力。
总结一下,平方根是数学中一个重要的概念,理解平方根的定义及掌握计算方法对学生的数学学习至关重要。教师在教学中应该注重引导学生正确理解平方根的概念,同时通过丰富的例题帮助他们掌握不同的计算方法,从而提高他们的数学运算能力。
数学教案平方根 篇二
平方根的应用及拓展
平方根作为数学中的基础概念,在实际生活中有着广泛的应用。本篇将介绍平方根在实际生活中的应用,并拓展平方根的相关知识,帮助学生更好地理解和运用平方根。
首先,让我们来看看平方根在几何学中的应用。在几何学中,平方根常常用于计算长度、面积或体积等问题。例如,我们可以利用平方根来计算直角三角形的斜边长度,或计算圆的半径、直径等。通过实际的几何问题,学生可以更好地理解平方根的应用。
除了几何学,平方根还广泛应用于物理学、工程学等领域。在物理学中,平方根常常用于计算速度、加速度等物理量;在工程学中,平方根常常用于计算电路的功率、电压等。学生通过实际应用问题,可以更深入地理解平方根的意义和作用。
另外,我们还可以拓展平方根的相关知识,如立方根、四次根等。在教学中,可以通过拓展让学生了解更多的根的概念及计算方法,从而提高他们的数学思维能力和解决问题能力。
总之,平方根作为数学中的基础概念,在实际生活中有着广泛的应用。通过引导学生掌握平方根的应用及拓展相关知识,可以帮助他们更好地理解和运用平方根,从而提高他们的数学学习兴趣和能力。
数学教案平方根 篇三
教学目标:
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
二、导入新课:
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式 =a (x0)中,规定x = .
2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.
3、 想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。
4、例1 求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、练习
P69练习 1、2
四、探究:(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受 的大小.小正方形的.对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题13.1活动第1、2、3题
数学教案平方根 篇四
教学目标:
【知识与技能】
了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】
会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教具准备】
小黑板科学计算器
【教学过程】
一、导入
1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。
2、板书:实数1.1平方根
二、新授
(一)探求新知
1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?
2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?
4、有理数和无理数统称为实数。
(二)知识归纳:
1、板书:1.1平方根
2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)
3、怎么算?每块地砖的面积是:10.8120=0.09平方米。
由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。
4、练习:
由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)
例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。
6、说一说:9,16,25,49的一个平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,还有别的数吗?
2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。
3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)
4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。
5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;
把a的负平方根记作-。
6、0的平方根有且只有一个:0。0的平方根记作,即=0。
7、负数没有平方根。
8、求一个非负数的平方根,叫做开平方。
(四)巩固练习:
1、分别求下列各数的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)
2、分别求下列各数的算术平方根:100,16/25,0.49。(10,4/5,0.7)
三、小结与提高:
1、面积是196平方厘米的正方形,它的边长是多少厘米?
2、求算术平方根:81,25/144,0.16
数学教案平方根 篇五
教学设计示例
一.
教学目标
1.会用计算器求数的平方根;
2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习
知识的兴趣.
二.
教学重点与难点
教学重点
:用计算器求一个正数的平方根的程序
教学难点
:准确用计算器求解一个正数的平方根
三.教学方法
讲练结合
四.教学手段
实物投影仪,计算器
五.
教学过程
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01, 等数的平方根,但对于如:2,3, ,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求 的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求 的步骤如下:
小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求 的值。(保留4个有效数字)
解:用计算器求 的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求 的值。
解:用计算器求 的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是: 显示612.65685
≈612.7
练习:
求下列正数的算术平方根:
(1)49 ; (2)0.81; (3)1.5376; (4)5 ; (6)260;
(7) ; (8)101.38
六.总结
利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。
八.作业
教材 A组1、2、3
九、
板书设计