倒数的认识教案设计 篇一
在数学课堂上,倒数是一个重要的概念,也是学生需要掌握的基本技能之一。本文将设计一个倒数的认识教案,帮助学生深入理解这一概念。
教学目标:
1. 学生能够准确理解倒数的概念,并能用适当的方式表示倒数。
2. 学生能够运用倒数的概念解决实际问题。
3. 学生能够在日常生活中应用倒数的技能。
教学内容:
1. 什么是倒数:倒数是指一个数与1之间的差值,例如,1/2的倒数是2。
2. 倒数的表示方式:倒数可以用小数、分数或百分数来表示。
3. 倒数的运用:倒数在日常生活中的应用,例如计算速度、时间等。
教学过程:
1. 激发学生兴趣:通过引入有趣的问题或游戏,激发学生对倒数的兴趣。
2. 导入倒数的概念:通过具体的例子,引导学生理解倒数的概念。
3. 讲解倒数的表示方式:介绍倒数的表示方式,并让学生进行练习。
4. 练习与应用:设计一些练习题,让学生运用倒数的概念解决实际问题。
5. 拓展与总结:引导学生思考倒数在其他领域的应用,并总结本节课的重点内容。
教学评估:
1. 课堂练习:通过课堂练习考察学生对倒数的理解程度。
2. 作业布置:设计相关的作业,巩固学生对倒数的掌握。
3. 课后讨论:鼓励学生在课后讨论倒数在实际生活中的应用,促进思维拓展。
通过本教案设计,相信学生能够更好地理解倒数的概念,提高数学运用能力,培养学生的数学思维和解决问题的能力。
倒数的认识教案设计 篇二
倒数是数学中一个重要的概念,也是学生在学习数学过程中需要掌握的基本技能之一。本文将设计一个倒数的认识教案,帮助学生更好地理解和掌握倒数的概念。
教学目标:
1. 学生能够准确理解倒数的概念,掌握倒数的运算方法。
2. 学生能够应用倒数的概念解决实际问题。
3. 学生能够在实际生活中灵活运用倒数的技能。
教学内容:
1. 什么是倒数:倒数是指一个数与1之间的差值,是一个数的倒数是这个数与1的商。
2. 倒数的运算:介绍倒数的运算规则,让学生掌握倒数的计算方法。
3. 倒数的应用:倒数在日常生活中的应用,例如计算速度、时间等。
教学过程:
1. 导入倒数的概念:通过具体的例子引入倒数的概念,让学生理解倒数的含义。
2. 讲解倒数的运算:介绍倒数的运算方法,让学生进行练习。
3. 拓展应用:设计一些实际问题,让学生运用倒数的概念解决问题。
4. 总结与应用:总结本节课的重点内容,引导学生在日常生活中应用倒数的技能。
教学评估:
1. 课堂练习:通过课堂练习考察学生对倒数的掌握程度。
2. 作业布置:设计相关的作业,巩固学生对倒数的理解。
3. 实际应用:鼓励学生在日常生活中应用倒数的技能,提高学生的数学运用能力。
通过本教案设计,相信学生能够更深入地理解倒数的概念,提高数学运用能力,培养学生的数学思维和解决问题的能力。
倒数的认识教案设计 篇三
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟 练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学 生的自主学习能力,提高学生观察、比较、抽象、归纳以及合 作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:
倒数的意义与求法。
教学难点:
1、0的倒数,小数、带分数倒数的求法。
教学用具:
媒体展示台
教学过程:
一、竞赛激趣,揭示课题。
1、谈话:
师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。
(说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次)。(写在白纸上)
2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。
师:短短30秒你们就写出了这么多算式,本领真大,由此也反映出数学课堂里“时间就是效率”的真谛,我们从小要养成珍惜时间习惯。
追问:如果老师再给你们一些时间,你们还能写吗?能写多少个?
生:可以。能写无数个。(板书:无数)
4、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)今天这堂课我们就来学习倒数的知识。
[以学生喜爱的竞赛拉开一堂课的序幕,充分调动学生学习的主动性与积极性;借助30秒的竞赛时间教育学生要珍惜时间,让德育教育的内容渗透在数学课;通过追问让学生初步感知倒数有无数组,同时竞赛的内容为倒数意义的揭示打下伏笔。]
二、引导质疑,自主探究。
1、引导质疑。
师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?
生:什么是倒数? 生:倒数是指一个数吗?
生:倒数应该怎样表述? 生:怎样求倒数?
生:倒数是不是一定是分数? 生:倒数有什么用?
生:是不是每个数都有倒数? ...........
2、自主探究。
(1)、明确学习方法。
师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。
(2)、学生自学讨论,教师指导。
(3)、组织全班交流。
你现在知道什么是倒数了吗?
怎样求一个数的倒数?
3、质疑:在自学的过程中你们还有什么疑惑的地方吗?
[“以学定教”是教学设计的指导,学生是学习的主人,教师是学生学习活动的组织者、引导者,协作者。在学生的学习过程中:问题应由学生提出,方法应由学生寻找,规律应由学生发现、总结。本环节通过学生“质疑-自学-合作讨论-交流”的流程提高学生发现问题、解决问题的能力以及合作学习的能力。]
三、巩固提高,拓展外延。
师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?
(1)、说出下列各数的倒数,说说你是怎么想的?
8、1、0.....
(组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)
(2)、课本练习题:第4题。
(3)、判断:
a、9的倒数是 。
b、任何真分数的倒数都是假分数。
c、任何假分数的倒数都是真分数。
d、是倒数。
e、1的倒数是1,0的倒数是0。
(4)、开放题:
×( )=( )× = ×( )=6×( )
你会填吗?你能用今天学到的知识来填吗?
[倒数是两个数之间的一种关系,学习它主要是为今后学习分数除法服务,以上设计一方面是巩固学生对倒数概念的掌握,另一方面又是让学生在旧知里建构新知,应用新知,从而进一步感悟到知识的内在联系。]
四、总结反思,发展能力。
师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?
生:提问-自学讨论-练习
师:你能用“我学会了--”来描述今天学到的知识吗?
生:.......
[通过引导学生反思学习方法,让学生清楚地意识到自学讨论的作用。用“我学会了.....”来描述学到的知识,一方面是培养学生经常总结自己学习的习惯,另一方面提高学生的语言表达能力。]
本教学设计的特点:
1、构建“自主-合作探究”的自主学习模式。
新课程强调教学过程是师生交往、共同发展的互动过程;在教学过程中要注重培养学生的独立性与自主性,引导学生质疑、探究,使学习成为在教师指导下主动的、富有个性的过程。本设计中的教学过程是围绕学生“质疑-自学-讨论-交流”活动展开:问题由学生提出,答案由学生找出,评价由学生判定。
2、“以学定教”重新定位教师与学生角色。
新课程强调:学生是数学学习的主人,教师是学生数学学习活动的指导者、参与者、合作者。本教学设计的整个学习活动,充分体现了这一点,教师在引导学生对未知领域进行质疑基础上,与学生一起自主学习、合作探究。让学生通过自主合作的学习活动,在质疑与释疑中建构着自己的数学知识,发展着自己的数学素养。
3、注意学科间的整合。
数学是一门比较抽象的、理性占主导的学科。最优化的数学学习不仅要完成本门学科特定的任务,还应巧妙整合完成其它学科的任务。在本教学设计中,最后我让学生反思学习的方法,用“我学会了--”来总结自己的学习后的收获,这是整合语文学科对学生的语言表达能力训练。
倒数的认识教案设计 篇四
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:
知道倒数的意义,会求一个数的倒数
教学难点:
1、0的倒数的求法。
教具准备:
多媒体课件
教学过程:
一、开门见山,揭示课题
1、出示课题:倒数的认识
老师:今天我们一起来学习第三单元分数除法的第1课时:倒数的认识
2、理解字的意思
老师:上课之前老师想请同学帮我解决个问题:“倒”这个字怎么读的?
学生:倒dǎo,dào
师:这两种读音表示的意思一样吗?学生用茶杯演示。
3、老师:你觉得在这里这个“倒”字怎么读?你见过这样的数吗?
学生举例说说。
看到这个课题,在你的头脑中会产生什么问题?
(设计意图:学生通过自己对字的理解,初步感知什么是倒数)
二、探索新知,突破重点
(一)、倒数的意义
1、初步探究
师:请看这两组算式,我们分组完成,比比哪组同学速度快。
学生计算,交流
老师:做第1组算式的同学完成的快
这时学生可能会说:不公平,第1组的题目简单,得数都是1、
老师:为什么第1
组的算式简单,有什么特点?
生:每组数中两个分数的分子、分母的位置颠倒过来了。
生:都是乘法。
生:得数都是1
老师:这样的两个数互为倒数,你们能用一句话说说什么是倒数吗?
学生试着概括
师概括并板书:乘积是1的两个数互为倒数。
师:找一找关键词,说说你对这句话的理解。
生1:乘积是1、是乘法,而且积是1
生2:两个数,只能是两个数,三个,四个数的乘积是1也不能说它们互为倒数。
生3:互为倒数。
老师:“互为倒数”是什么意思呢,谁愿意说说
老师:这学期我们班来了几位新同学,经过几周的相处,你们之间互相成为朋友了吗?谁能告诉大家,你是怎样理解“互相成为朋友”这句话的?
生:我是他的朋友,他也是我的朋友。
师:那我们举个例子说说。比如3/8和8/3的乘积是1,我们就说因为3/8和8/3互为倒数。所以3/8的倒数是8/3;也可以说8/3的倒数是3/8。(示范说)
师:同桌两个人举出倒数的例子,并仿照刚才老师说的用上“因为”
“所以”。
(设计意图:学生在计算练习中体会互为倒数的两个数的乘积是1,同时也体会到互为倒数的两个数的练习与区别,为求一个数的倒数做准备。)
2、深入剖析
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
师:和的积是1,我们就说(生齐说)
师:5和的乘积是1,这两个数的关系可以怎么说?
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
(二)、倒数的求法
1、求分数的倒数
师:(出示课件例1)下面哪两个数互为倒数?请同位的同学之间在一起交流一下,把它们找出来。(学生合作交流,认真寻找。)
老师:你是怎样找出来的?
学生回答,老师问:五分之三的倒数和五分之三相等吗?
学生:不相等
板书:
2、求整数的倒数
师:整数6的倒数怎么求?
生:把6看成是分母是1的分数,再把分子分母调换位置。
板书:
3、交流一下1和0这两个特殊的数。
师:那1
的倒数是几呢?(学生很快就说出来了,并说明了理由)
师:0的倒数呢?生:没有。
师:为什么?
学生讨论交流
生1:因为0和任何数相乘都得0,不可能得1。
生2:分子是0的分数,实际上就等于0,0可以看成是0/2、0/3……把这些分数的分子分母调换位置后分母就为0了,而分母不可以为0。
师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1的倒数是1,0没有倒数。
生齐读求一个数倒数的方法。
(设计意图:学生在讨论交流中探索1、0的倒数,能很好的理解)
三、巩固练习
1、写出下面各数的倒数。
2、写出下面各数的倒数。
①0、8的倒数是( )。
②的倒数是( )。
3、争当小法官,明察秋毫。
(1)1的倒数是1。
(2)A的倒数是1/A。
(3)因为0、5×2=1,所以2是倒数。
(4)真分数的倒数都大于1,假分数的倒数都小于1。
(5)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、课堂小结
师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!
倒数的认识教案设计 篇五
教学目标
1.理解和掌握倒数的意义.
2.能正确的求出一个数的倒数.
3.培养学生的观察能力和概括能力.
教学重点
认识倒数并掌握求倒数的方法
教学难点
小数与整数求倒数的方法
教学过程
一、基本训练
(一)口算
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系.
(板书:倒数)
三、新课教学
(一)乘积是1的两个数存在着怎样的倒数关系呢?
请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数.
和 存在怎样的倒数关系呢?2和 呢?
(二)深化理解
教师提问
1.什么是互为倒数?
2.怎样理解这句话?(举例说明)
( 的倒数是 , 的倒数是 ,不能说 是倒数,要说它是谁的倒数.)
3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).
(三)求一个数的倒数
1.例:写出 、 的倒数
学生试做讨论后,教师将过程板书如下:
所以 的倒数是 , 的倒数是 .
(能不能写成 ,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.
2.深化
你会求小数的倒数吗?(学生试做)
倒数的认识教案设计 篇六
一、 教学内容:
九年义务教育六年制第九册第二单元《倒数的认识》
二、 教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、 教学目标:
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、 教学重点
:
理解倒数的意义,掌握求倒数的方法。
五、 教学难点:
熟练写出一个数的倒数。
六、
教学过程:
(一)、 谈话
1.交流
师: 我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的'相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15; 生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(!)出示卡片 (六位同学举着卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5 9 1/7/8 0.4
小组讨论 指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。
2.你是怎么找出7/4的倒数的?
……
提问: 我们怎样才能很快地找到一个数的倒数?为什么?
4.练习 请剩下的没有找到朋友的同学继续找倒数
5.讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6.完善求一个数的倒数的方法
三、 巩固练习
(一)填空
1.因为5/3x3/5=1,所以( )和( )互为( );
2.因为15x1/15=1,所以( )和( )互为 ( );
3.4/7与( )互为倒数;
4.( )的倒数是6/11
5.( )的倒数是2
6.1/8的倒数是( )
7.1/2/7的倒数是( )
8.0.3的倒数是( )
(二)判断
1.得数是1的两个数互为 倒数。( )
2.互为倒数的两个数乘积一定是1。( )
3. 1的倒数是1,所以0的倒数是0 。( )
4.分数的倒数都大于1。( )
(四)思考
4/5x( )=( )x8
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、 布置作业
简评:
一、自主学习中让学生勇于创新
新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。
二、在游戏活动中实现新知的推进
游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。