高中数学优秀教学设计(经典6篇)

时间:2017-05-07 04:33:11
染雾
分享
WORD下载 PDF下载 投诉

高中数学优秀教学设计 篇一

在高中数学教学中,如何设计出一堂优秀的课程是每位数学老师都需要思考的问题。本文将分享一种高中数学优秀教学设计,帮助学生更好地理解和掌握数学知识。

首先,我们要确定教学目标。在设计数学教学课程时,首先要明确教学目标,确定学生需要掌握的知识点和技能。例如,我们可以设定教学目标为“学生能够熟练掌握函数的概念和性质,并能够灵活运用函数解决实际问题”。

其次,我们要设计合适的教学内容和教学方法。在教学内容方面,可以通过引入生动有趣的例子和实际问题,激发学生学习的兴趣。在教学方法方面,可以采用启发式教学法,引导学生通过实际问题发现数学规律,培养他们的逻辑思维能力。

另外,我们还要设计一些互动环节,让学生参与到课堂中来。例如,可以设计小组讨论、问题解答等环节,让学生在交流和合作中更好地理解和掌握知识。

最后,要设计一些评价方式,及时检查学生的学习效果。可以通过布置作业、小测验等方式,检查学生对知识点的掌握情况,及时发现问题并加以解决。

总的来说,高中数学优秀教学设计要注重教学目标的明确、教学内容的生动有趣、教学方法的多样化和评价方式的及时有效。只有这样,才能帮助学生更好地理解和掌握数学知识,提高他们的学习兴趣和学习效果。

高中数学优秀教学设计 篇二

高中数学作为一门重要的学科,如何设计出一堂优秀的数学教学课程是每位数学老师都需要思考的问题。本文将分享一种高中数学优秀教学设计,帮助学生更好地学习和掌握数学知识。

首先,我们要确定教学目标。在设计数学教学课程时,首先要明确教学目标,确定学生需要达到的学习效果。例如,我们可以设定教学目标为“学生能够掌握概率的基本概念和计算方法,并能够运用概率解决实际问题”。

其次,我们要设计合适的教学内容和教学方法。在教学内容方面,可以通过引入实际问题和案例,让学生更好地理解数学知识的应用。在教学方法方面,可以采用探究式学习法,引导学生通过实际问题探索数学规律,培养他们的解决问题能力。

另外,我们还要设计一些互动环节,增加课堂的趣味性和活跃度。例如,可以设计角色扮演、游戏竞赛等环节,让学生在参与中更好地学习和理解知识。

最后,要设计一些评价方式,及时检查学生的学习效果。可以通过课堂讨论、小组展示等方式,检查学生对知识点的掌握情况,及时发现问题并加以解决。

总的来说,高中数学优秀教学设计要注重教学目标的明确、教学内容的生动有趣、教学方法的多样化和评价方式的及时有效。只有这样,才能帮助学生更好地学习和掌握数学知识,提高他们的学习兴趣和学习效果。

高中数学优秀教学设计 篇三

  【教学目的】

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  【重点难点】

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  【内容分析】

  1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

  集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

  【教学过程】

  一、复习引入:

  1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2.教材中的章头引言;

  3.集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是 -2,0,2

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  【小结】

  1.集合的有关概念:(集合、元素、属于、不属于)

  2.集合元素的性质:确定性,互异性,无序性

  3.常用数集的定义及记法

高中数学优秀教学设计 篇四

  学习目标

  明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.

  学习过程

  一、学前准备

  复习:

  1.(课本P28A13)填空:

  (1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

  (2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

  (3)5名工人要在3天中各自选择1天休息,不同方法的`种数是 ;

  (4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

  二、新课导学

  探究新知(复习教材P14~P25,找出疑惑之处)

  问题1:判断下列问题哪个是排列问题,哪个是组合问题:

  (1)从4个风景点中选出2个安排游览,有多少种不同的方法?

  (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

  应用示例

  例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

  例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.

  (1) 甲站在中间;

  (2)甲、乙必须相邻;

  (3)甲在乙的左边(但不一定相邻);

  (4)甲、乙必须相邻,且丙不能站在排头和排尾;

  (5)甲、乙、丙相邻;

  (6)甲、乙不相邻;

  (7)甲、乙、丙两两不相邻。

  反馈练习

  1. (课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?

  2.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

  3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有 种.

  当堂检测

  1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )

  A.42 B.30 C.20 D.12

  2.(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

  课后作业

  1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?

  2.(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

高中数学优秀教学设计 篇五

  1.课题

  填写课题名称(高中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4.教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5.教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:奇函数的定义)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

  (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6.教学板书

  2.高中数学教案格式

  一.课题(说明本课名称)

  二.教学目的(或称教学要求,或称教学目标,说明本课所

要完成的教学任务)

  三.课型(说明属新授课,还是复习课)

  四.课时(说明属第几课时)

  五.教学重点(说明本课所必须解决的关键性问题)

  六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)

  七.教学方法要根据学生实际,注重引导自学,注重启发思维

  八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)

  九.作业处理(说明如何布置书面或口头作业)

  十.板书设计(说明上课时准备写在黑板上的内容)

  十一.教具(或称教具准备,说明辅助教学手段使用的工具)

  十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)

  3.高中数学教案范文

  【教学目标】

  1.知识与技能

  (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

  (2)账务等差数列的通项公式及其推导过程:

  (3)会应用等差数列通项公式解决简单问题。

  2.过程与方法

  在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

  3.情感、态度与价值观

  通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

  【教学重点】

  ①等差数列的概念;

  ②等差数列的通项公式

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;

  ②等差数列的通项公式的推导过程.

  【学情分析】

  我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  【设计思路】

  1、教法

  ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

  2、学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

  【教学过程】

  一、创设情境,引入新课

  1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数.

  学生:

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

  二、观察归纳,形成定义

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

  (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

  三、举一反三,巩固定义

  1、判定下列数列是否为等差数列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.

  (设计意图:强化学生对等差数列“等差”特征的理解和应用).

  2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  (设计意图:强化等差数列的证明定义法)

  四、利用定义,导出通项

  1、已知等差数列:8,5,2,…,求第200项?

  2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

  (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

  五、应用通项,解决问题

  1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

  2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差数列3,7,11,…的第4项和第10项

  教师:给出问题,让学生自己操练,教师巡视学生答题情况.

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

  (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

  六、反馈练习:教材13页练习1

  七、归纳总结:

  1、一个定义:

  等差数列的定义及定义表达式

  2、一个公式:

  等差数列的通项公式

  3、二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出补充

  (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

  【设计反思】

  本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

高中数学优秀教学设计 篇六

  [学习目标]

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  [学习重点]

  两角和与差的正弦、余弦、正切公式

  [学习难点]

  余弦和角公式的推导

  [知识结构]

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

  4、关于公式的正用、逆用及变用

高中数学优秀教学设计(经典6篇)

手机扫码分享

Top