六年级上册数学分数除法教案【最新6篇】

时间:2013-08-08 06:18:23
染雾
分享
WORD下载 PDF下载 投诉

六年级上册数学分数除法教案 篇一

在六年级上册数学学习中,分数除法是一个比较复杂的概念,需要学生掌握一定的技巧和方法。在这篇教案中,我将介绍如何教授六年级学生进行分数除法运算。

首先,我们需要确保学生已经掌握了分数的基本概念和运算规则。他们应该能够将分数化简为最简形式,并且能够进行分数的加减乘除运算。如果学生在这些基础知识上还存在困难,可以先进行复习和强化。

接着,我们可以开始介绍分数除法的方法。首先,要明确分数除法的定义:将一个分数除以另一个分数就是将这两个分数的乘法倒过来进行。例如,要计算2/3 ÷ 1/4,可以先将除数1/4取倒数得到4/1,然后再将乘法2/3 × 4/1进行计算,得到8/3,即2又2/3。

在教学过程中,可以通过具体的例题来帮助学生理解分数除法的步骤和方法。让学生多做一些练习题,巩固他们的计算能力和理解程度。同时,也可以引导学生分析问题,思考如何简化计算过程,提高他们的解题效率。

另外,还可以设计一些有趣的游戏或活动,让学生在轻松愉快的氛围中学习分数除法。例如,可以组织学生进行分组比赛,看哪个小组能够最快正确地解答出分数除法题目。这样不仅可以激发学生的学习兴趣,还能培养他们的团队合作能力。

总的来说,教授六年级学生分数除法需要耐心和方法。通过适当的引导和练习,相信学生们能够掌握这一难点知识,提高他们的数学能力和解题水平。

六年级上册数学分数除法教案 篇二

在六年级数学课上,分数除法是一个比较难掌握的概念,需要学生们认真学习和练习。在这篇教案中,我将分享一些教学方法和技巧,帮助学生更好地理解和掌握分数除法。

首先,我们可以通过具体的例子引导学生理解分数除法的概念。例如,可以让学生想象一块巧克力被分成几块,每块分给几个人,从而引导他们理解分数除法就是将一个数分成若干份的过程。通过生动形象的比喻,可以帮助学生更好地理解抽象的数学概念。

其次,我们可以引导学生探讨分数除法的规律和特点。例如,当除数是整数时,商的分子不变,分母变为原来的倒数;当被除数和除数都是分数时,可以先化简分数再进行除法运算。通过让学生自己总结规律,可以提高他们的学习主动性和思维能力。

另外,我们还可以设计一些趣味性强的练习题,激发学生的学习兴趣。例如,可以设置一些有趣的故事情景,让学生运用分数除法来解决问题。这样不仅可以增加学习的趣味性,还能培养学生的逻辑思维和解决问题的能力。

最后,要注意及时帮助学生解决遇到的困难和疑惑。在教学过程中,要鼓励学生多提问题,及时纠正他们的错误,帮助他们建立正确的学习观念和方法。只有在理解和掌握基础知识的基础上,学生才能更好地理解和运用分数除法。

总的来说,教授六年级学生分数除法需要综合运用多种教学方法和技巧。通过引导和练习,相信学生们能够更好地理解和掌握这一数学概念,提高他们的数学水平和解题能力。

六年级上册数学分数除法教案 篇三

  教学目标

  1、使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  2、掌握分数除以整数的计算法则,并能正确的进行计算。

  3、培养学生分析能力、知识的迁移能力和语言表达能力。

  教学重点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算。

  教学难点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算。

  教学过程

  一、复习引新

  (一)说出下面各数的倒数。

  0.3 6

  (二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

  (三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(板书课题:)

  二、新授教学

  (一)、教学分数除法的意义(演示课件:分数除法的意义)

  1、每人吃半块月饼,4个人一共吃多少块月饼?

  教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?

  2、两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:2÷4

  3、两块月饼,分给每人半块,可以分给几个人?

  列式:

  教师提问:说一说结果是多少?你是如何得出结果的?

  4.组织学生讨论:分数除法的意义。

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  5、练习反馈。

  根据:,写出,

  (二)教学分数除以整数的计算法则

  1、出示例1。把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

  (1)求每段长多少米怎样列算式?

  (2)以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

  (3)教师板书整理。

  (米)

  2、教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:

  把米铁丝平均分成6段,就是求米的是多少,列式是:

  3、教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?

  (米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

  4、学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

六年级上册数学分数除法教案 篇四

  教学目标:

  使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

  教学重点:

  整数除以分数的计算方法的推导。

  教学难点:

  理解“÷”转化为“×”的转化过程。

  教学过程:

  一、复习

  1、说一说÷18的意义。

  2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

  (1)口述算式和结果。

  (2)板书:数量关系:速度=路程×时间

  二、新授

  今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

  板书课题:一个数除以分数

  (1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

  教师板书:18÷ (出示线段图)

  (2)推导18÷的计算方法。

  引导学生分两步进行计算

  第一部分:求小时行多少千米。

  提问

  1)、小时里面有几个小时?

  2)、2个小时行驶多少千米?

  3)、1个小时行驶多少千米?即小时行驶多少千米?

  明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

  提问

  1)、1小时里面有几个小时?

  2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

  明确

  1)为1小时5个小时,所以,要算18××5,也就是18×。

  2)18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

  根据上面的推想,板书:18÷=18×,=45千米

  答汔车1小时行驶45千米。

  强调

  1)18÷不便于直接除,把它转化乘法。

  2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

  3)是的倒数,即的倒数是。

  2、小结:引导学生归纳整数除以分数的计算方法。

  板书:整数除以分数可以转化为乘以这个数的倒数。

  三、巩固练习

  1、在( )里填上适当的分数,使等式成立。

  15÷=15×( )10÷ =10×( )

  8÷=8×( ) ÷9=×( )

  2、列式计算。

  (1)一堆煤,每次用去,多少次才能用完?

  (2)王晶小时做15朵花,1小时做多少朵花?

  3、教科书第29页的“做一做”

  四、作业练习八第1——4题。

六年级上册数学分数除法教案 篇五

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教具准备:

多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  ×3 × ×

  × ×6 ×

  二、新知探究

  (一)、教学例1

  1、课件出示自学提纲:

  (1)出示插图及乘法应用题,学生列式计算。

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  2、学生自学后小组间交流

  3、全班汇报:

  100×3=300(克)

  A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

  ×3= (千克) ÷3= (千克) ÷3=3(盒)

  4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

  分数除法的意义与整数除法相同,都是已知两个因数的积与其

  中一个因数,求另个一个因数。都是乘法的逆运算。

  (二)、巩固分数除法意义的练习:P28“做一做”

  (三)、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、 ÷2= =,每份就是2个。

  B、 ÷2= × =,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、当堂测评(课件出示)

  1、计算

  ÷3 ÷3 ÷20 ÷5 ÷10 ÷6

  2、解决问题

  (1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

  (2)、正方形的周长是4/5米,它的边长是多少米?

  学生独立完成。

  教师讲评,小组间批阅。

  四、课堂总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  教学后记

六年级上册数学分数除法教案 篇六

  教学目标

  1.使学生进一步熟悉应用题的数量关系,能够掌握用算术、方程法解答两步计算的分数小数应用题。

  2.提高学生分析和解答应用题的能力。

  3.渗透对应思想。

  教学重点

  掌握数量关系,明确解题思路。

  教学难点

  会分析数量间的等量关系。

  教学准备

  投影片。

  教学过程

  (一)复习

  1.看句子列算式。

  2.复习数量关系。

  (1)行程问题中的三量关系式是什么?

  (2)相遇问题与行程问题三量关系有什么区别?是什么?

  投影出示:速度和×相遇时间=合走路程

  合走路程÷速度和=相遇时间

  合走路程÷相遇时间=速度和

  (3)它们同类量之间有什么关系?

  合走路程=甲走的路程+乙走路程

  速度和=甲的速度+乙的速度

  (二)导入新课

  这些数量关系以前学过,解决了一些实际问题,今天我们就来应用这些数量关系解决分数、小数中的一些实际问题。(板书课题)

  (三)讲授新课

  例1两地相距13千米,甲乙二人从两地同时出发,相向而行

  1.读题,说出已知、未知条件分别是什么?

  2.分析:

  (1)这是什么类型的题?和我们以前学过的相遇问题有什么区别?

  (相遇问题,相遇时间给的是分数。)

  (相遇时间,甲乙二人都行了这么长时间。)

  在日常生活中,遇到的数不可能都是整数,那就要用分数、小数来表示。这样的问题你们会解决吗?

  (3)请同学们自己选择方法做这道题。

  (4)投影反馈各种不同做法,讲算理。

  说每步的算理。

  解③设乙每小时行x千米。

  为什么这样列方程,根据是什么?

  (甲走的路程+乙走的路程=总路程)

  解④设(略)

  列方程根据是:速度和×相遇时间=距离。

  (5)对比用方程解答和用算术方法解答从解题思路上有什么不同?

  (算术法是根据已知量,运用关系式,求出未知量;方程法是根据关系式确定等量关系,让未知数x参加运算。)

  (6)小结:解答应用题时,首先明确数量之间的关系,灵活运用,选择多角度思考,用不同方法解答。

  (1)读题分析:

  这道题是一道什么样的应用题?

  分数应用题的解题步骤是什么?

  (一、认真审题;二、分析重点句;三、确定单位“1”;四、准确画图;五、列式计算。)

  (2)根据解题步骤同桌讨论后,说出解题思路。(重点句是“两周正好

  共修的总和。)

  (3)同学们自己画图,列式。(一生板演)

  解①设这段公路长x米。

  等号左边和等号右边各表示什么?

  为什么这样列式?

  以先求两周共修的,然后再求这段公路全长多少千米。)

  (4)两种解法的思路有什么不同?

  (方程法设全长单位”1“为x,根据分数乘法的意义来列等量关系

  出单位”1“。)

  (5)例2与以前学的简单分数应用题的区别是什么?

  (简单分数应用题是直接给出相对应的量率;而今天学的是运用对应思想,间接地求出相对应的量率。)

  以上两个例题的学习使我们明白,在整数应用题时所学的数量关系,在小数、分数中照样可以应用,思路相同。

  (三)巩固练习

六年级上册数学分数除法教案【最新6篇】

手机扫码分享

Top